CLOVER | Robust Control, State Estimation and Disturbance Compensation for Highly Dynamic Environmental Mechatronic Systems

Summary
The main goal of the CLOVER project is to offer a novel methodology in an environmental mechatronic control system design relying on multidisciplinary knowledge. This methodology should allow aspects to be taken into account, such as controller robustness, indirect measurement of system states and parameters, and disturbances attenuation on the stage of establishing controller architecture. In addition, methods for tuning the control algorithms will be developed and based on the solution of optimization task considering control priorities, such as environment friendliness and energy efficiency. The implementation of the project CLOVER is based on intensive staff exchange that will lead to collaborative research and training between universities and industrial organizations from Germany, Austria, Belgium, Norway, UK, Mexico, and Japan.
To guarantee a strong focus of the project activities on real-world problems, the CLOVER concept is based on the R&D and training in three interfacing topics: “Mechatronic chassis systems of electric vehicles”, “Mechatronic-based grid-interconnection circuitry”, and “Offshore mechatronics”, which will identify and facilitate collaborative learning and production of innovative knowledge. The CLOVER objectives will be achieved through intensive networking measures covering knowledge transfer and experience sharing between participants from academic and non-academic sectors, and professional advancement of the consortium members through intersectoral and international collaboration and secondments. In this regard, the CLOVER project is fully consistent with the targets of H2020-MSCA-RISE programme and will provide excellent opportunities for personal career development of participating staff and will lead to the creation of a strong European and international research group to create new environmental mechatronic systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/734832
Start date: 01-01-2017
End date: 30-06-2022
Total budget - Public funding: 769 500,00 Euro - 684 000,00 Euro
Cordis data

Original description

The main goal of the CLOVER project is to offer a novel methodology in an environmental mechatronic control system design relying on multidisciplinary knowledge. This methodology should allow aspects to be taken into account, such as controller robustness, indirect measurement of system states and parameters, and disturbances attenuation on the stage of establishing controller architecture. In addition, methods for tuning the control algorithms will be developed and based on the solution of optimization task considering control priorities, such as environment friendliness and energy efficiency. The implementation of the project CLOVER is based on intensive staff exchange that will lead to collaborative research and training between universities and industrial organizations from Germany, Austria, Belgium, Norway, UK, Mexico, and Japan.
To guarantee a strong focus of the project activities on real-world problems, the CLOVER concept is based on the R&D and training in three interfacing topics: “Mechatronic chassis systems of electric vehicles”, “Mechatronic-based grid-interconnection circuitry”, and “Offshore mechatronics”, which will identify and facilitate collaborative learning and production of innovative knowledge. The CLOVER objectives will be achieved through intensive networking measures covering knowledge transfer and experience sharing between participants from academic and non-academic sectors, and professional advancement of the consortium members through intersectoral and international collaboration and secondments. In this regard, the CLOVER project is fully consistent with the targets of H2020-MSCA-RISE programme and will provide excellent opportunities for personal career development of participating staff and will lead to the creation of a strong European and international research group to create new environmental mechatronic systems.

Status

CLOSED

Call topic

MSCA-RISE-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.3. Stimulating innovation by means of cross-fertilisation of knowledge
H2020-MSCA-RISE-2016
MSCA-RISE-2016