MULTIMAT | A multiscale approach towards mesostructured porous material design

Summary
"MULTIMAT addresses (1) the industrial and societal need for affordable materials that have a highly defined and large porosity together with the required (mechanical, chemical and/or thermal) robustness for application in thermal insulation, catalysts, fuel cells and oil spill remediation and (2) the scientific need to better understand the mechanisms underlying the assembly of small building blocks into larger structures that are ordered hierarchally across multiple scales (""multiscale assembly""). Together this will contribute to achieving MULTIMAT's future aim: Understanding and ultimately steering the bottom-up construction of materials with complex hierarchical structures.

MULTIMAT will train a next generation of scientists (13 ESRs) able to master this complex design-and-assembly process.

The MULTIMAT research activities include 1) the design and synthesis of building blocks with tailor made shapes and sizes, 2) their (co)-assembly into ordered structures with predefined mesoscale organisation, 3) the in-situ analysis of the development of morphology of structure during these processes, 4) the simulation of the structure formation from the molecular to the mesoscale level and the prediction of related physical properties, 5) the evaluation and testing of the properties and performance in selected technological applications.

MULTIMAT brings together leading scientists from all relevant disciplines, and a large number of industrial partners, multinationals as well as SMEs. This strong involvement of industry clearly demonstrates the need for researchers educated in steering colloidal self-organisation. Direct outcomes of the project will include novel building blocks, (super-)porous materials with outstanding properties and novel tools for in situ imaging and molecular modelling.
"
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/676045
Start date: 01-03-2016
End date: 29-02-2020
Total budget - Public funding: 3 293 103,14 Euro - 3 293 103,00 Euro
Cordis data

Original description

"MULTIMAT addresses (1) the industrial and societal need for affordable materials that have a highly defined and large porosity together with the required (mechanical, chemical and/or thermal) robustness for application in thermal insulation, catalysts, fuel cells and oil spill remediation and (2) the scientific need to better understand the mechanisms underlying the assembly of small building blocks into larger structures that are ordered hierarchally across multiple scales (""multiscale assembly""). Together this will contribute to achieving MULTIMAT's future aim: Understanding and ultimately steering the bottom-up construction of materials with complex hierarchical structures.

MULTIMAT will train a next generation of scientists (13 ESRs) able to master this complex design-and-assembly process.

The MULTIMAT research activities include 1) the design and synthesis of building blocks with tailor made shapes and sizes, 2) their (co)-assembly into ordered structures with predefined mesoscale organisation, 3) the in-situ analysis of the development of morphology of structure during these processes, 4) the simulation of the structure formation from the molecular to the mesoscale level and the prediction of related physical properties, 5) the evaluation and testing of the properties and performance in selected technological applications.

MULTIMAT brings together leading scientists from all relevant disciplines, and a large number of industrial partners, multinationals as well as SMEs. This strong involvement of industry clearly demonstrates the need for researchers educated in steering colloidal self-organisation. Direct outcomes of the project will include novel building blocks, (super-)porous materials with outstanding properties and novel tools for in situ imaging and molecular modelling.
"

Status

CLOSED

Call topic

MSCA-ITN-2015-ETN

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2015
MSCA-ITN-2015-ETN Marie Skłodowska-Curie Innovative Training Networks (ITN-ETN)