Summary
Sulfur-containing molecules are widespread as medicines, agrochemicals and organic materials. Their preparation could be greatly facilitated by implementing sulfur-radicals, which are a class of very versatile synthetic intermediates. However, to date, difficulties associated to their generation and controlling their reactivity have severely limited their use and exploitation in synthetic settings.
Here we propose the development of two conceptually novel and general ways to prepare sulfur-radicals using visible-light. These processes will capitalize on recent developments in the host group that has disclosed two novel organocatalytic ways for the generation of nitrogen-radicals.
This proposal seeks to substantially expand this photochemical approach by developing methods for the generation and use of sulfur-radical. The power of this approach will be demonstrated by fast generation of 3D molecules containing atoms of sulfur. These methods will be then integrated with other reaction platforms that, taking advantage of visible-light as source of energy, will engage the sulfur-radical in new reactivity modes, to allow novel and powerful multicomponent thio-functionalization reactions. Furthermore, we will harness these activation modes to enable the direct thiolation of aromatic compounds in a single step without the use of transition metal catalysts.
Through the use of this strategy, the rapid construction of many relevant and complex –sulfur-containing molecules will be possible.
The development of such an innovative and ambitious project at the University of Manchester will be facilitated by generating, transferring, sharing and disseminating knowledge, and will enhance my career development following the training plan envisioned.
Here we propose the development of two conceptually novel and general ways to prepare sulfur-radicals using visible-light. These processes will capitalize on recent developments in the host group that has disclosed two novel organocatalytic ways for the generation of nitrogen-radicals.
This proposal seeks to substantially expand this photochemical approach by developing methods for the generation and use of sulfur-radical. The power of this approach will be demonstrated by fast generation of 3D molecules containing atoms of sulfur. These methods will be then integrated with other reaction platforms that, taking advantage of visible-light as source of energy, will engage the sulfur-radical in new reactivity modes, to allow novel and powerful multicomponent thio-functionalization reactions. Furthermore, we will harness these activation modes to enable the direct thiolation of aromatic compounds in a single step without the use of transition metal catalysts.
Through the use of this strategy, the rapid construction of many relevant and complex –sulfur-containing molecules will be possible.
The development of such an innovative and ambitious project at the University of Manchester will be facilitated by generating, transferring, sharing and disseminating knowledge, and will enhance my career development following the training plan envisioned.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/840318 |
Start date: | 01-05-2019 |
End date: | 31-08-2021 |
Total budget - Public funding: | 224 933,76 Euro - 224 933,00 Euro |
Cordis data
Original description
Sulfur-containing molecules are widespread as medicines, agrochemicals and organic materials. Their preparation could be greatly facilitated by implementing sulfur-radicals, which are a class of very versatile synthetic intermediates. However, to date, difficulties associated to their generation and controlling their reactivity have severely limited their use and exploitation in synthetic settings.Here we propose the development of two conceptually novel and general ways to prepare sulfur-radicals using visible-light. These processes will capitalize on recent developments in the host group that has disclosed two novel organocatalytic ways for the generation of nitrogen-radicals.
This proposal seeks to substantially expand this photochemical approach by developing methods for the generation and use of sulfur-radical. The power of this approach will be demonstrated by fast generation of 3D molecules containing atoms of sulfur. These methods will be then integrated with other reaction platforms that, taking advantage of visible-light as source of energy, will engage the sulfur-radical in new reactivity modes, to allow novel and powerful multicomponent thio-functionalization reactions. Furthermore, we will harness these activation modes to enable the direct thiolation of aromatic compounds in a single step without the use of transition metal catalysts.
Through the use of this strategy, the rapid construction of many relevant and complex –sulfur-containing molecules will be possible.
The development of such an innovative and ambitious project at the University of Manchester will be facilitated by generating, transferring, sharing and disseminating knowledge, and will enhance my career development following the training plan envisioned.
Status
CLOSEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Images
No images available.
Geographical location(s)