WEARSENSNANO | Continuous monitoring of hypothermia in elderly people by the novel integrated wearable sensor system based on cellulose hydrogel and metallic nanowires

Summary
One common influence of ageing is that it makes the individual susceptible to hypothermia, which is known to be death causing low body temperature (35°C). Hypothermia could be detected at early stages by monitoring various physiological parameters such as ECG signal, skin temperature and body movement. Owing to their flexibility and stretchability, wearable sensors could provide long term continuous recordings of electrophysiological activity for monitoring hypothermia in elder people.

Wearable temperature, pressure and strain sensors in forms were studied by many research groups. Those approaches utilized complex and high-cost photolithography techniques, which makes the devices far from commercialization. Besides, the poor processability and lack of skin compatibility of stretchable polymers used as substrates prevents the practical use of these materials. However, solution-processable nanomaterials offer a unique way to reduce the cost and complexity, while cellulose hydrogel is easy processable and skin friendly polymer.

Thus, in this project, we aim to develop an integrated wearable temperature and pressure/strain sensor based on solution processable nanowires, and cellulose hydrogel to monitor hypothermia in elder people via measuring pressure, strain and temperature. Pressure/Strain sensor will be prepared via laminating two silver nanowire printed cellulose hydrogels sandwiching a pressure sensitive dielectric layer. Temperature sensor will be fabricated via transfer printing of gold nanowires on the cellulose hydrogel substrate. Next, pressure/strain and temperature sensors will be laminated to form the integrated sensor. Finally, the sensors will be used in real patients.

In terms of research quality, infrastructure and services, Prof. Vapaavuori’s lab and Aalto University are quite appropriate for the proposed project. The training is believed to strongly contribute to the researcher’s academic, and scientific career.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101031327
Start date: 01-06-2021
End date: 31-05-2023
Total budget - Public funding: 202 680,96 Euro - 202 680,00 Euro
Cordis data

Original description

One common influence of ageing is that it makes the individual susceptible to hypothermia, which is known to be death causing low body temperature (35°C). Hypothermia could be detected at early stages by monitoring various physiological parameters such as ECG signal, skin temperature and body movement. Owing to their flexibility and stretchability, wearable sensors could provide long term continuous recordings of electrophysiological activity for monitoring hypothermia in elder people.

Wearable temperature, pressure and strain sensors in forms were studied by many research groups. Those approaches utilized complex and high-cost photolithography techniques, which makes the devices far from commercialization. Besides, the poor processability and lack of skin compatibility of stretchable polymers used as substrates prevents the practical use of these materials. However, solution-processable nanomaterials offer a unique way to reduce the cost and complexity, while cellulose hydrogel is easy processable and skin friendly polymer.

Thus, in this project, we aim to develop an integrated wearable temperature and pressure/strain sensor based on solution processable nanowires, and cellulose hydrogel to monitor hypothermia in elder people via measuring pressure, strain and temperature. Pressure/Strain sensor will be prepared via laminating two silver nanowire printed cellulose hydrogels sandwiching a pressure sensitive dielectric layer. Temperature sensor will be fabricated via transfer printing of gold nanowires on the cellulose hydrogel substrate. Next, pressure/strain and temperature sensors will be laminated to form the integrated sensor. Finally, the sensors will be used in real patients.

In terms of research quality, infrastructure and services, Prof. Vapaavuori’s lab and Aalto University are quite appropriate for the proposed project. The training is believed to strongly contribute to the researcher’s academic, and scientific career.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships