OPLD | Organic Polariton Laser Diode

Summary
The high current density required for population inversion in organic semiconductors has made the realization of an organic laser diode rather challenging. Here, I propose an organic polariton laser diode (OPLD) in which the threshold is achieved through the mechanism of polariton condensation. This conceptually different lasing mechanism does not require population inversion, suggesting that lasing under electrical injection can be, for the first time, demonstrated in organic semiconductors. To date, most commercial laser diodes are based on inorganic semiconductors, which are expensive materials, require complex fabrication and manufacturing processes, and have a limited range of lasing wavelengths. Organic semiconductors, in contrast, are ideal materials for the industrial production of diode lasers and other optoelectronic devices due to their ease of fabrication and processing, low acquisition-cost, and broad spectrum of emission. The realization of the first OPLD within this fellowship will be tremendously important for the European market. In 2014, diode-laser technology comprised 46% of the total revenue ($9.4 billion) in the global laser market. Moreover, emerging automotive lighting (BMW Laserlight) and high-definition laser display (LG LASER display) technologies could enable diode lasers to overtake the global laser market. Therefore, any steps towards the realization of the first organic laser diode (or organic solid state laser) would represent a significant technological and scientific achievement. Furthermore, the proposed device offers a totally new, due to its electrical pumping, platform for fundamental studies of quantum fluids of light.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/745115
Start date: 01-06-2017
End date: 31-05-2019
Total budget - Public funding: 179 325,60 Euro - 179 325,00 Euro
Cordis data

Original description

The high current density required for population inversion in organic semiconductors has made the realization of an organic laser diode rather challenging. Here, I propose an organic polariton laser diode (OPLD) in which the threshold is achieved through the mechanism of polariton condensation. This conceptually different lasing mechanism does not require population inversion, suggesting that lasing under electrical injection can be, for the first time, demonstrated in organic semiconductors. To date, most commercial laser diodes are based on inorganic semiconductors, which are expensive materials, require complex fabrication and manufacturing processes, and have a limited range of lasing wavelengths. Organic semiconductors, in contrast, are ideal materials for the industrial production of diode lasers and other optoelectronic devices due to their ease of fabrication and processing, low acquisition-cost, and broad spectrum of emission. The realization of the first OPLD within this fellowship will be tremendously important for the European market. In 2014, diode-laser technology comprised 46% of the total revenue ($9.4 billion) in the global laser market. Moreover, emerging automotive lighting (BMW Laserlight) and high-definition laser display (LG LASER display) technologies could enable diode lasers to overtake the global laser market. Therefore, any steps towards the realization of the first organic laser diode (or organic solid state laser) would represent a significant technological and scientific achievement. Furthermore, the proposed device offers a totally new, due to its electrical pumping, platform for fundamental studies of quantum fluids of light.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016