ADVANTAG5 | Advanced Wide-Band Transceiver Architectures for Beyond 5G Wireless Systems

Summary
The fifth generation and beyond radio systems targets 1000 times traffic volumes compared to present state-of-the-art. In order to guarantee the quality of service, communication capacity leap of three orders of magnitude requires sophisticated interference management and communication channel protection from the interference generated by other users. The objective of this project is to develop integrated transceiver hardware structures for massive MIMO/beam forming antenna arrays, supporting agile carrier aggregation, digitally assisted interference management, and full duplex communication, thus enhancing communication efficiency in spatial, temporal and frequency domains.

The evolution of communications systems inherently relies on integrated microelectronic circuits. In circuits developed in this project, we will fully exploit the digital-driven process evolution by utilizing digitally intensive time/phase domain signal processing as much as possible to minimize the effect of existing discrepancy between digital-driven process scaling and analog circuit design. The developed structures will take advantage of time/phase domain signal processing, taking full advantage of CMOS process evolution and inherently supporting beam forming antenna array structures.

We will demonstrate the effectiveness of design methods by implementing transceiver hardware structures for massive transceiver arrays. Digitally reconfigurable transceiver arrays will enable spatial multiplexing, agile carrier aggregation and digitally assisted interference management to enhance communication efficiency in spatial, temporal and frequency domains, enabling the targeted capacity leap.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/704947
Start date: 01-06-2017
End date: 31-05-2020
Total budget - Public funding: 267 793,20 Euro - 267 793,00 Euro
Cordis data

Original description

The fifth generation and beyond radio systems targets 1000 times traffic volumes compared to present state-of-the-art. In order to guarantee the quality of service, communication capacity leap of three orders of magnitude requires sophisticated interference management and communication channel protection from the interference generated by other users. The objective of this project is to develop integrated transceiver hardware structures for massive MIMO/beam forming antenna arrays, supporting agile carrier aggregation, digitally assisted interference management, and full duplex communication, thus enhancing communication efficiency in spatial, temporal and frequency domains.

The evolution of communications systems inherently relies on integrated microelectronic circuits. In circuits developed in this project, we will fully exploit the digital-driven process evolution by utilizing digitally intensive time/phase domain signal processing as much as possible to minimize the effect of existing discrepancy between digital-driven process scaling and analog circuit design. The developed structures will take advantage of time/phase domain signal processing, taking full advantage of CMOS process evolution and inherently supporting beam forming antenna array structures.

We will demonstrate the effectiveness of design methods by implementing transceiver hardware structures for massive transceiver arrays. Digitally reconfigurable transceiver arrays will enable spatial multiplexing, agile carrier aggregation and digitally assisted interference management to enhance communication efficiency in spatial, temporal and frequency domains, enabling the targeted capacity leap.

Status

CLOSED

Call topic

MSCA-IF-2015-GF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-GF Marie Skłodowska-Curie Individual Fellowships (IF-GF)