Summary
The main goal of this project is developing a complete synthesis and optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer. New computing models for diode, FET, and four-terminal switch based nanoarrays are developed. The proposed methodology implements both arithmetic and memory elements, necessitated by achieving a computer, by considering performance parameters such as area, delay, power dissipation, and reliability. With combination of arithmetic and memory elements a synchronous state machine (SSM), representation of a computer, is realized. The proposed methodology targets variety of emerging technologies including nanowire/nanotube crossbar arrays, magnetic switch-based structures, and crossbar memories. The results of this project will be a foundation of nano-crossbar based circuit design techniques and greatly contribute to the construction of emerging computers beyond CMOS.
The topic of this project can be considered under the research area of “Emerging Computing Models” or “Computational Nanoelectronics”, more specifically the design, modeling, and simulation of new nanoscale switches beyond CMOS. The topic is well addressed and fit in H2020 work programmes FET (Future and Emerging Technologies) and ICT-25 (Generic Micro- and Nano-electronic Technologies).
The topic of this project can be considered under the research area of “Emerging Computing Models” or “Computational Nanoelectronics”, more specifically the design, modeling, and simulation of new nanoscale switches beyond CMOS. The topic is well addressed and fit in H2020 work programmes FET (Future and Emerging Technologies) and ICT-25 (Generic Micro- and Nano-electronic Technologies).
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/691178 |
Start date: | 01-12-2015 |
End date: | 30-11-2019 |
Total budget - Public funding: | 577 035,00 Euro - 577 035,00 Euro |
Cordis data
Original description
The main goal of this project is developing a complete synthesis and optimization methodology for switching nano-crossbar arrays that leads to the design and construction of an emerging nanocomputer. New computing models for diode, FET, and four-terminal switch based nanoarrays are developed. The proposed methodology implements both arithmetic and memory elements, necessitated by achieving a computer, by considering performance parameters such as area, delay, power dissipation, and reliability. With combination of arithmetic and memory elements a synchronous state machine (SSM), representation of a computer, is realized. The proposed methodology targets variety of emerging technologies including nanowire/nanotube crossbar arrays, magnetic switch-based structures, and crossbar memories. The results of this project will be a foundation of nano-crossbar based circuit design techniques and greatly contribute to the construction of emerging computers beyond CMOS.The topic of this project can be considered under the research area of “Emerging Computing Models” or “Computational Nanoelectronics”, more specifically the design, modeling, and simulation of new nanoscale switches beyond CMOS. The topic is well addressed and fit in H2020 work programmes FET (Future and Emerging Technologies) and ICT-25 (Generic Micro- and Nano-electronic Technologies).
Status
CLOSEDCall topic
MSCA-RISE-2015Update Date
28-04-2024
Images
No images available.
Geographical location(s)