Summary
Phosphorus (P) is an essential nutrient and major economic factor. The EU covers its demands by importing Phosphate rock listed as critical raw material due to its scarce resource. Sewage sludge from waste water treatment plants is a promising alternative source of P. RECaPhos focuses on development of a novel method for phosphorus recovery based on the thermo-chemical reaction of sewage sludge, in the presence of CaO in a fluidized-bed reactor, assuring in the same time the destroy of dangerous pathogens, antibiotics and contaminations. Goal is to develop, optimize, and evaluate the novel method and to provide rules and data for process up scaling purposes. This will be achieved by means of development of innovative models to investigate the thermodynamic and chemical process taking place. Experimental data from host institution facilities and data from literature will be used for models validation and optimization. The results will be used as a basis for the design of a demo plant as well as for the identification/evaluation of the process economics and commercialization potential. Two reference cases will be studied, one for a new plant and one for a retrofit of an existing fluidized bed combustion plant. Comparison with other competitive processes will be realized. RECaPHOS is original, highly innovative, and ambitious since the same cheap widely available, natural, non toxic, and environmental friendly Ca-based material is used for P adsorption and subsequent P recycling as it is directly used as feedstock for fertilizer production, closing a natural cycle. RECaPHOS is an excellent and unique opportunity for the researcher who is a mother of two daughters to restart her career after more than 4 years of career break prior to call deadline due to maternity and after resettling back to Europe/Germany after a 3 years continuous stay outside Europe in the last 5 years, in a highly innovative non-profit academic institution that supports women and work life balance.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/842138 |
Start date: | 15-05-2019 |
End date: | 29-09-2022 |
Total budget - Public funding: | 262 209,60 Euro - 262 209,00 Euro |
Cordis data
Original description
Phosphorus (P) is an essential nutrient and major economic factor. The EU covers its demands by importing Phosphate rock listed as critical raw material due to its scarce resource. Sewage sludge from waste water treatment plants is a promising alternative source of P. RECaPhos focuses on development of a novel method for phosphorus recovery based on the thermo-chemical reaction of sewage sludge, in the presence of CaO in a fluidized-bed reactor, assuring in the same time the destroy of dangerous pathogens, antibiotics and contaminations. Goal is to develop, optimize, and evaluate the novel method and to provide rules and data for process up scaling purposes. This will be achieved by means of development of innovative models to investigate the thermodynamic and chemical process taking place. Experimental data from host institution facilities and data from literature will be used for models validation and optimization. The results will be used as a basis for the design of a demo plant as well as for the identification/evaluation of the process economics and commercialization potential. Two reference cases will be studied, one for a new plant and one for a retrofit of an existing fluidized bed combustion plant. Comparison with other competitive processes will be realized. RECaPHOS is original, highly innovative, and ambitious since the same cheap widely available, natural, non toxic, and environmental friendly Ca-based material is used for P adsorption and subsequent P recycling as it is directly used as feedstock for fertilizer production, closing a natural cycle. RECaPHOS is an excellent and unique opportunity for the researcher who is a mother of two daughters to restart her career after more than 4 years of career break prior to call deadline due to maternity and after resettling back to Europe/Germany after a 3 years continuous stay outside Europe in the last 5 years, in a highly innovative non-profit academic institution that supports women and work life balance.Status
SIGNEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Images
No images available.
Geographical location(s)