RAPTOR | RIS And Purification Traps for Optimised spectRoscopy (RAPTOR)

Summary
This project will enhance the capabilities of the laser spectroscopy programme at the Ion Guide Separator Online (IGISOL) and will culminate in a measurement of the spins, electromagnetic moments and changes in mean-squared charge radii of 108-120Pd. During the project, the experienced researcher will design, construct and commission a Collinear Resonance Ionization Spectroscopy (CRIS) beamline specifically tailored to this goal. Key new developments will be a novel ion beam neutralizer and the ability to tune the energy of the ion beam in order to optimize the total experimental efficiency and resolution. All this will be realized with a significantly reduced footprint as compared to conventional collinear laser spectroscopy beamlines.

The new technique will first be tested with radioactive beams of silver, after which measurements on beams of radioactive palladium will be performed. These measurements will demonstrate significant improvements to the sensitivity of the high-resolution laser spectroscopy programme at the IGISOL. This Marie Curie project is proposed as the first step towards a long-term goal of coupling of a CRIS beamline to the existing double-Penning trap. This would provide significant advantages to both the CRIS and the Penning trap measurements. Upon completion, the RIS And Purification Traps for Optimised spectRoscopy (RAPTOR) project will thus have demonstrated a considerable expansion of the capabilities of the IGISOL laboratory, and will open up future avenues of research that can be pursued in the coming years or decades.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/844829
Start date: 01-04-2019
End date: 31-03-2021
Total budget - Public funding: 190 680,96 Euro - 190 680,00 Euro
Cordis data

Original description

This project will enhance the capabilities of the laser spectroscopy programme at the Ion Guide Separator Online (IGISOL) and will culminate in a measurement of the spins, electromagnetic moments and changes in mean-squared charge radii of 108-120Pd. During the project, the experienced researcher will design, construct and commission a Collinear Resonance Ionization Spectroscopy (CRIS) beamline specifically tailored to this goal. Key new developments will be a novel ion beam neutralizer and the ability to tune the energy of the ion beam in order to optimize the total experimental efficiency and resolution. All this will be realized with a significantly reduced footprint as compared to conventional collinear laser spectroscopy beamlines.

The new technique will first be tested with radioactive beams of silver, after which measurements on beams of radioactive palladium will be performed. These measurements will demonstrate significant improvements to the sensitivity of the high-resolution laser spectroscopy programme at the IGISOL. This Marie Curie project is proposed as the first step towards a long-term goal of coupling of a CRIS beamline to the existing double-Penning trap. This would provide significant advantages to both the CRIS and the Penning trap measurements. Upon completion, the RIS And Purification Traps for Optimised spectRoscopy (RAPTOR) project will thus have demonstrated a considerable expansion of the capabilities of the IGISOL laboratory, and will open up future avenues of research that can be pursued in the coming years or decades.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018