techFRONT | Novel techniques for quantitative behaviour of convection-diffusion equations

Summary
Physical laws are mathematically encoded into partial differential equations (PDEs). They tell us how certain quantities---like heat, water, or even cars---depend on position and time. Even without knowing the solutions explicitly, the ultimate goal of this project is to investigate fine properties of irregular solutions of certain classes of PDEs: can we predict the behaviour of the solution by using barriers; how will the solution behave after a long time has passed; can irregular solutions become regular---possibly classical; are the problems well-posed even for growing initial data? In practice, such properties describe the underlying physical model. Indeed, the mathematical insight provides new knowledge about the real-world applications, and information about the application gives hints to solutions of mathematical problems.

We aim to use new and innovative techniques to prove fine properties of solutions of generalized porous medium equations (GPME). We intend to build a solution theory for a new class of weak solutions. This includes general well-posedness, regularity theory, and asymptotic behaviour. Our approach will provide an alternative to established methods due to DeGiorgi-Nash and Moser which seems to be unsuitable in this context. When there is convection present in GPME, that is, when we have a convection-diffusion equation (CDE), we plan to explore the possibilities of using the new to theory for GPME to shed new light on the asymptotic behaviour for CDE.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/839749
Start date: 01-09-2020
End date: 31-08-2022
Total budget - Public funding: 172 932,48 Euro - 172 932,00 Euro
Cordis data

Original description

Physical laws are mathematically encoded into partial differential equations (PDEs). They tell us how certain quantities---like heat, water, or even cars---depend on position and time. Even without knowing the solutions explicitly, the ultimate goal of this project is to investigate fine properties of irregular solutions of certain classes of PDEs: can we predict the behaviour of the solution by using barriers; how will the solution behave after a long time has passed; can irregular solutions become regular---possibly classical; are the problems well-posed even for growing initial data? In practice, such properties describe the underlying physical model. Indeed, the mathematical insight provides new knowledge about the real-world applications, and information about the application gives hints to solutions of mathematical problems.

We aim to use new and innovative techniques to prove fine properties of solutions of generalized porous medium equations (GPME). We intend to build a solution theory for a new class of weak solutions. This includes general well-posedness, regularity theory, and asymptotic behaviour. Our approach will provide an alternative to established methods due to DeGiorgi-Nash and Moser which seems to be unsuitable in this context. When there is convection present in GPME, that is, when we have a convection-diffusion equation (CDE), we plan to explore the possibilities of using the new to theory for GPME to shed new light on the asymptotic behaviour for CDE.

Status

TERMINATED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018