EuroPLEx | European network for Particle physics, Lattice field theory and Extreme computing

Summary
EuroPLEx will provide a stimulating and fertile environment to train a new generation of researchers in Theoretical Particle Physics, equipped with all the analytical and computational skills that are distinctive of the field of Lattice QCD. The main core of EuroPLEx research aims at a deeper understanding of strongly interacting matter. This will be pursued by numerical simulations of the underlying fundamental theories, including mainly (but not only) QCD.

EuroPLEx will enable a solid comparison of forthcoming experimental results from high-energy experiments (e.g. those of LHC Run-2 at CERN) to our best theoretical understanding. Precision tests of the Standard Model will mark the perimeter of what our current theoretical understanding can describe, as opposed to what hints at New Physics. Moreover, EuroPLEx will also directly tackle the study of Beyond the Standard Model candidate theories.

EuroPLEx will confront the theoretical and computational challenges of describing matter under the extreme conditions of high temperature and density, aiming at a picture of the so far elusive QCD phase diagram.

Finally, EuroPLEx will explore subjects at the interface between non-perturbative Quantum Field Theory and theoretical scenarios like those put forward by Resurgence or String Theory, interacting with theorists interested in the amazing capabilities of lattice field theories as a theoretical laboratory.

ESRs hired in EuroPLEx will be part of research projects in which advanced theoretical physics meets algorithmic studies and hardware-aware software developments. Research and training capabilities are strengthened by partners from both experimental physics and industry. EuroPLEx training will benefit from collaborating with partners in many respects, building on solid experience in hardware codesign, software innovation, massive data treatment and Data Science, all ubiquitous outside academia in any kind of consulting, modelling and most fields of IT industry.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/813942
Start date: 01-01-2019
End date: 30-09-2023
Total budget - Public funding: 4 045 159,44 Euro - 4 045 159,00 Euro
Cordis data

Original description

EuroPLEx will provide a stimulating and fertile environment to train a new generation of researchers in Theoretical Particle Physics, equipped with all the analytical and computational skills that are distinctive of the field of Lattice QCD. The main core of EuroPLEx research aims at a deeper understanding of strongly interacting matter. This will be pursued by numerical simulations of the underlying fundamental theories, including mainly (but not only) QCD.

EuroPLEx will enable a solid comparison of forthcoming experimental results from high-energy experiments (e.g. those of LHC Run-2 at CERN) to our best theoretical understanding. Precision tests of the Standard Model will mark the perimeter of what our current theoretical understanding can describe, as opposed to what hints at New Physics. Moreover, EuroPLEx will also directly tackle the study of Beyond the Standard Model candidate theories.

EuroPLEx will confront the theoretical and computational challenges of describing matter under the extreme conditions of high temperature and density, aiming at a picture of the so far elusive QCD phase diagram.

Finally, EuroPLEx will explore subjects at the interface between non-perturbative Quantum Field Theory and theoretical scenarios like those put forward by Resurgence or String Theory, interacting with theorists interested in the amazing capabilities of lattice field theories as a theoretical laboratory.

ESRs hired in EuroPLEx will be part of research projects in which advanced theoretical physics meets algorithmic studies and hardware-aware software developments. Research and training capabilities are strengthened by partners from both experimental physics and industry. EuroPLEx training will benefit from collaborating with partners in many respects, building on solid experience in hardware codesign, software innovation, massive data treatment and Data Science, all ubiquitous outside academia in any kind of consulting, modelling and most fields of IT industry.

Status

CLOSED

Call topic

MSCA-ITN-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2018
MSCA-ITN-2018