Summary
"PLASMIONICO is an innovative proposal aiming at advancing sustainable energy production by developing a ""cold-cathode"" thermionic generator as key component of novel photovoltaic/thermoelectric (PV/TE) hybrid devices to outperform the solar cell and thermoelectric generator working separately. The cold cathode, instead of being brought to extremely high temperatures, produces the emission of electrons by the absorption of infrared (IR) photons in the unused region of the solar spectrum below the PV cell bandgap. The IR photons will launch plasmons at a nanostructured metallic cathode, which upon relaxation will generate a photocurrent. A great advantage is that plasmon-resonance driven thermionic emission is not restricted to a particular class of materials, working for Si-based devices as well as for organic (soft and flexible) materials, since the cathode temperature is that of a working solar cell. Research activities will span the whole added-value chain from fundamental studies of materials for thermionic generation, including the optimization of plasmonic nanostructures, reaching higher TRLs by realization of a thermionic demonstrator. PLASMIONICO would contribute to the current energy challenge, a priority in both the EU and ICMAB-CSIC research agendas. The proposal possesses high interdisciplinary character by merging activities in physics, chemistry, materials science and device technology, which together with the unique network of international partners will contribute to boost the track records and develop the career of the applicant."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/839402 |
Start date: | 01-09-2019 |
End date: | 31-08-2021 |
Total budget - Public funding: | 172 932,48 Euro - 172 932,00 Euro |
Cordis data
Original description
"PLASMIONICO is an innovative proposal aiming at advancing sustainable energy production by developing a ""cold-cathode"" thermionic generator as key component of novel photovoltaic/thermoelectric (PV/TE) hybrid devices to outperform the solar cell and thermoelectric generator working separately. The cold cathode, instead of being brought to extremely high temperatures, produces the emission of electrons by the absorption of infrared (IR) photons in the unused region of the solar spectrum below the PV cell bandgap. The IR photons will launch plasmons at a nanostructured metallic cathode, which upon relaxation will generate a photocurrent. A great advantage is that plasmon-resonance driven thermionic emission is not restricted to a particular class of materials, working for Si-based devices as well as for organic (soft and flexible) materials, since the cathode temperature is that of a working solar cell. Research activities will span the whole added-value chain from fundamental studies of materials for thermionic generation, including the optimization of plasmonic nanostructures, reaching higher TRLs by realization of a thermionic demonstrator. PLASMIONICO would contribute to the current energy challenge, a priority in both the EU and ICMAB-CSIC research agendas. The proposal possesses high interdisciplinary character by merging activities in physics, chemistry, materials science and device technology, which together with the unique network of international partners will contribute to boost the track records and develop the career of the applicant."Status
CLOSEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Images
No images available.
Geographical location(s)