Summary
Circadian clocks are conserved time-tracking mechanisms that allow organisms to align endogenous physiological processes with the changing environment. Growing evidence supports a role for these biological clocks, not only as mere timekeepers, but as pivotal regulators of extensive cellular networks. In plants, the influence of the clock on development and physiology is pervasive and many traits of agronomical value are subjected to circadian regulation. Noteworthy, clock gene alleles have been traditionally selected because of their desirable influences on key agricultural traits.
An outstanding clock protein that functions at the interface between the clock and its output is GIGANTEA (GI). We propose to investigate this regulatory hub protein, and characterize the molecular mechanism by which it modulates the balance between growth and defense. Knowledge gained from the model plant Arabidopsis will be transferred to a crop species (tomato) in order to establish a framework for targeted biotechnological manipulation. Consequently, an innovative strategy based on edgetic alleles will be deployed to generate new GI alleles that uncouple growth from defense, a key feature for cultivated species.
From a training point of view, this fellowship will build on the Experienced Researcher’s (ER) solid expertise on molecular biology and complement it with the skills required to translate basic research to tackle specific agronomical issues. This will undoubtedly boost her opportunities to reach an independent research position with biotechnological orientation.
In summary, this proposal aims to (i) advance our understanding on the connections between the clock and its output in model and crop species, (ii) generate novel variants of circadian-clock components as a biotechnological strategy for sustainable agriculture, and (iii) render a well-trained academic researcher with the capacities needed to develop a professional career within biotechnological research.
An outstanding clock protein that functions at the interface between the clock and its output is GIGANTEA (GI). We propose to investigate this regulatory hub protein, and characterize the molecular mechanism by which it modulates the balance between growth and defense. Knowledge gained from the model plant Arabidopsis will be transferred to a crop species (tomato) in order to establish a framework for targeted biotechnological manipulation. Consequently, an innovative strategy based on edgetic alleles will be deployed to generate new GI alleles that uncouple growth from defense, a key feature for cultivated species.
From a training point of view, this fellowship will build on the Experienced Researcher’s (ER) solid expertise on molecular biology and complement it with the skills required to translate basic research to tackle specific agronomical issues. This will undoubtedly boost her opportunities to reach an independent research position with biotechnological orientation.
In summary, this proposal aims to (i) advance our understanding on the connections between the clock and its output in model and crop species, (ii) generate novel variants of circadian-clock components as a biotechnological strategy for sustainable agriculture, and (iii) render a well-trained academic researcher with the capacities needed to develop a professional career within biotechnological research.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/895249 |
Start date: | 01-04-2020 |
End date: | 31-03-2022 |
Total budget - Public funding: | 172 932,48 Euro - 172 932,00 Euro |
Cordis data
Original description
Circadian clocks are conserved time-tracking mechanisms that allow organisms to align endogenous physiological processes with the changing environment. Growing evidence supports a role for these biological clocks, not only as mere timekeepers, but as pivotal regulators of extensive cellular networks. In plants, the influence of the clock on development and physiology is pervasive and many traits of agronomical value are subjected to circadian regulation. Noteworthy, clock gene alleles have been traditionally selected because of their desirable influences on key agricultural traits.An outstanding clock protein that functions at the interface between the clock and its output is GIGANTEA (GI). We propose to investigate this regulatory hub protein, and characterize the molecular mechanism by which it modulates the balance between growth and defense. Knowledge gained from the model plant Arabidopsis will be transferred to a crop species (tomato) in order to establish a framework for targeted biotechnological manipulation. Consequently, an innovative strategy based on edgetic alleles will be deployed to generate new GI alleles that uncouple growth from defense, a key feature for cultivated species.
From a training point of view, this fellowship will build on the Experienced Researcher’s (ER) solid expertise on molecular biology and complement it with the skills required to translate basic research to tackle specific agronomical issues. This will undoubtedly boost her opportunities to reach an independent research position with biotechnological orientation.
In summary, this proposal aims to (i) advance our understanding on the connections between the clock and its output in model and crop species, (ii) generate novel variants of circadian-clock components as a biotechnological strategy for sustainable agriculture, and (iii) render a well-trained academic researcher with the capacities needed to develop a professional career within biotechnological research.
Status
TERMINATEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)