Summary
Effective diagnostic technologies are essential for mitigating the devastating impact that infectious disease has on society. The identification of ligands that can target infectious disease biomarkers within patient samples is key to the function of modern diagnostics. Unfortunately, current methods for ligand selection are slow and labour intensive, and frequently hinder the development of diagnostic technologies. Novel methods for automating this process will increase efficiency and improve the capacity of communities to respond to outbreaks and epidemics. During this fellowship I will develop a novel microfluidic device capable of automated high-throughput selection of highly robust infectious disease targeting ligands. The main objectives are as follows: 1) Explore novel microfluidic materials that are compatible with common ligand selection work flows; 2) Develop a fully automated microfluidic platform capable of performing multiple rounds of ligand selection; 3) Apply this system to generate novel ligands against an emerging HIV biomarker. The device will be underpinned by multiple core microfluidic technologies developed within the host lab, including: rapid droplet generation, droplet disruption, non-fouling materials, and highly responsive microvalves. These technologies will be combined with my expertise in protein chemistry, protein engineering, and chemical biology to achieve a significant leap forwards in automated ligand selection. The resultant device will vastly increase accessibility to high-throughput ligand selection, enabling smaller labs to more effectively select high-affinity ligands against emerging disease targets. This will have a significant impact on the fields of diagnostics, targeted therapeutics, protein engineering, and microfluidics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/840232 |
Start date: | 01-02-2020 |
End date: | 31-01-2022 |
Total budget - Public funding: | 191 149,44 Euro - 191 149,00 Euro |
Cordis data
Original description
Effective diagnostic technologies are essential for mitigating the devastating impact that infectious disease has on society. The identification of ligands that can target infectious disease biomarkers within patient samples is key to the function of modern diagnostics. Unfortunately, current methods for ligand selection are slow and labour intensive, and frequently hinder the development of diagnostic technologies. Novel methods for automating this process will increase efficiency and improve the capacity of communities to respond to outbreaks and epidemics. During this fellowship I will develop a novel microfluidic device capable of automated high-throughput selection of highly robust infectious disease targeting ligands. The main objectives are as follows: 1) Explore novel microfluidic materials that are compatible with common ligand selection work flows; 2) Develop a fully automated microfluidic platform capable of performing multiple rounds of ligand selection; 3) Apply this system to generate novel ligands against an emerging HIV biomarker. The device will be underpinned by multiple core microfluidic technologies developed within the host lab, including: rapid droplet generation, droplet disruption, non-fouling materials, and highly responsive microvalves. These technologies will be combined with my expertise in protein chemistry, protein engineering, and chemical biology to achieve a significant leap forwards in automated ligand selection. The resultant device will vastly increase accessibility to high-throughput ligand selection, enabling smaller labs to more effectively select high-affinity ligands against emerging disease targets. This will have a significant impact on the fields of diagnostics, targeted therapeutics, protein engineering, and microfluidics.Status
CLOSEDCall topic
MSCA-IF-2018Update Date
28-04-2024
Images
No images available.
Geographical location(s)