DISCOSH | The Impact of Polymer Dispersity and Monomer Sequence on Self-healing and Photodegradation of Dynamically Crosslinked Polymers

Summary
Dynamically crosslinked polymer materials (DPMs) have tremendous potential in the development of the next generation of smart functional materials. The presence of dynamic or reversible bonds in the system allows DPMs to display a significant number of beneficial properties such as self-healing, (re)processability, and shape-memory which will enable an extended lifetime, with reduced replacement costs, and improved performance against mechanical challenges. Recently, substantial interest has been developed to improve the properties of DPMs through various dynamic chemistries and structural features of polymers. Similarly, dispersity, molecular weight distributions (MWDs), and monomer sequences play a vital role in governing material properties and functions. However, there is a requirement for a deeper understanding of how the dispersity, MWD, and monomer sequence impact the properties of DPMs. Project DISCOSH is anticipated to study the missing link between MW of dynamic polymers to their thermomechanical properties. The dispersities, MWDs, and monomer sequences of the underlying co-polymer will be tuned to understand the structure-property relationship of DPMs for their thermomechanical properties, self-healing behavior, and degradability of the DPMs. The multidisciplinary nature of the project involves merging one of the top ten emerging technologies in polymer chemistry (controlling polymer dispersity through living polymerization) with the advances in material properties. The fellow’s expertise in material synthesis, characterization techniques, and polymer degradation will be combined with the host’s advanced skills in the sequenced and dispersity controlled polymerization to obtain a deeper and essential understanding of the importance of the dispersity and sequence-controlled polymerization to achieve beneficial dynamic properties for next-generation materials.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101030516
Start date: 15-01-2022
End date: 14-01-2024
Total budget - Public funding: 191 149,44 Euro - 191 149,00 Euro
Cordis data

Original description

Dynamically crosslinked polymer materials (DPMs) have tremendous potential in the development of the next generation of smart functional materials. The presence of dynamic or reversible bonds in the system allows DPMs to display a significant number of beneficial properties such as self-healing, (re)processability, and shape-memory which will enable an extended lifetime, with reduced replacement costs, and improved performance against mechanical challenges. Recently, substantial interest has been developed to improve the properties of DPMs through various dynamic chemistries and structural features of polymers. Similarly, dispersity, molecular weight distributions (MWDs), and monomer sequences play a vital role in governing material properties and functions. However, there is a requirement for a deeper understanding of how the dispersity, MWD, and monomer sequence impact the properties of DPMs. Project DISCOSH is anticipated to study the missing link between MW of dynamic polymers to their thermomechanical properties. The dispersities, MWDs, and monomer sequences of the underlying co-polymer will be tuned to understand the structure-property relationship of DPMs for their thermomechanical properties, self-healing behavior, and degradability of the DPMs. The multidisciplinary nature of the project involves merging one of the top ten emerging technologies in polymer chemistry (controlling polymer dispersity through living polymerization) with the advances in material properties. The fellow’s expertise in material synthesis, characterization techniques, and polymer degradation will be combined with the host’s advanced skills in the sequenced and dispersity controlled polymerization to obtain a deeper and essential understanding of the importance of the dispersity and sequence-controlled polymerization to achieve beneficial dynamic properties for next-generation materials.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships