Summary
It is estimated that about 0.5% of the world’s population will require an articular cartilage (AC) intervention at some point in their life. Current treatment options for osteochondral (OC) lesions are only marginally successful, and if left untreated, lead to osteoarthritic (OA) joint disease, one of the major sources of disability world-wide. Many of the common surgical approaches to treat cartilage lesions like, microfracture (MF), are dependent on the efficient migration of cells from the underlying subchondral bone (SB) to ensure successful regeneration of the tissue. However, the extent of cell migration and hence the clinical outcome, is highly variable. To overcome this critical limitation, a scaffold is proposed which uses two key mechanisms to induce stem cell migration. Firstly, the scaffold is composed of macroporous annealed particle (MAP) hydrogels, whose void space naturally facilitates endogenous the migration of mesenchymal stem cells (MSCs). Secondly, the microgels are modified with a specific aptamer, Apt19S, which has been shown to have high affinity to MSCs. Specifically in this project; hyaluronic acid (HA) will be triple-modified with methacrylate groups, transglutaminase (TG)-sensitive peptides and the Apt19S aptamer to produce AptoGEL, a new and exciting material with key properties needed for OC regeneration. We hypothesize this advanced, yet biocompatible material, will provide an ideal 3D environment for promoting cell migration and differentiation leading to a more fully functional OC repair
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/885797 |
Start date: | 01-09-2020 |
End date: | 31-08-2022 |
Total budget - Public funding: | 191 149,44 Euro - 191 149,00 Euro |
Cordis data
Original description
It is estimated that about 0.5% of the world’s population will require an articular cartilage (AC) intervention at some point in their life. Current treatment options for osteochondral (OC) lesions are only marginally successful, and if left untreated, lead to osteoarthritic (OA) joint disease, one of the major sources of disability world-wide. Many of the common surgical approaches to treat cartilage lesions like, microfracture (MF), are dependent on the efficient migration of cells from the underlying subchondral bone (SB) to ensure successful regeneration of the tissue. However, the extent of cell migration and hence the clinical outcome, is highly variable. To overcome this critical limitation, a scaffold is proposed which uses two key mechanisms to induce stem cell migration. Firstly, the scaffold is composed of macroporous annealed particle (MAP) hydrogels, whose void space naturally facilitates endogenous the migration of mesenchymal stem cells (MSCs). Secondly, the microgels are modified with a specific aptamer, Apt19S, which has been shown to have high affinity to MSCs. Specifically in this project; hyaluronic acid (HA) will be triple-modified with methacrylate groups, transglutaminase (TG)-sensitive peptides and the Apt19S aptamer to produce AptoGEL, a new and exciting material with key properties needed for OC regeneration. We hypothesize this advanced, yet biocompatible material, will provide an ideal 3D environment for promoting cell migration and differentiation leading to a more fully functional OC repairStatus
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)