Microsyndia | Close encounters in the phycosphere: Microscale syntrophic interactions between diatom and diazotroph populations

Summary
Bacterial interactions with eukaryotic phytoplankton are ubiquitous in marine ecosystems. The basis of many of these interactions is a reciprocal exchange of metabolites that mutually benefits the organisms involved. Under diffusion limitation, such relationships typically require close spatial coupling between the two partners. How long these intimate interactions must endure for a sustained exchange to occur is unclear and challenges our judgement of what truly constitutes a symbiosis.
Understanding the dynamics of syntrophic interactions is essential to understand the impact of bacterial communities in marine biogeochemical cycles. With this proposal, I intend to evaluate the potential role of diazotrophic bacteria in alleviating the nutrient demands of algae in nitrogen-limited environments.
To achieve this, I plan to establish a model microbial system with a marine heterotrophic diazotroph, which has an obligate dependency on photosynthetically fixed carbon, and a diatom, which relies on nitrogen fixed by the diazotroph. I will construct a microfluidic bioreactor to enable detailed monitoring of the spatiotemporal distribution of bacteria and diatom cells during long-term culturing. Integrating this microenvironment with stable-isotope probing and Raman microscopy will allow me to quantify carbon and nitrogen uptake and transfer rates between partners. By relating microbial behaviour to single-cell activity rates, this project will offer invaluable information connecting the structure, dynamics and function of microbial consortia, and thereby provide robust insights into the basal ecological functioning that supports aquatic ecosystems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/886198
Start date: 01-08-2020
End date: 31-07-2022
Total budget - Public funding: 191 149,44 Euro - 191 149,00 Euro
Cordis data

Original description

Bacterial interactions with eukaryotic phytoplankton are ubiquitous in marine ecosystems. The basis of many of these interactions is a reciprocal exchange of metabolites that mutually benefits the organisms involved. Under diffusion limitation, such relationships typically require close spatial coupling between the two partners. How long these intimate interactions must endure for a sustained exchange to occur is unclear and challenges our judgement of what truly constitutes a symbiosis.
Understanding the dynamics of syntrophic interactions is essential to understand the impact of bacterial communities in marine biogeochemical cycles. With this proposal, I intend to evaluate the potential role of diazotrophic bacteria in alleviating the nutrient demands of algae in nitrogen-limited environments.
To achieve this, I plan to establish a model microbial system with a marine heterotrophic diazotroph, which has an obligate dependency on photosynthetically fixed carbon, and a diatom, which relies on nitrogen fixed by the diazotroph. I will construct a microfluidic bioreactor to enable detailed monitoring of the spatiotemporal distribution of bacteria and diatom cells during long-term culturing. Integrating this microenvironment with stable-isotope probing and Raman microscopy will allow me to quantify carbon and nitrogen uptake and transfer rates between partners. By relating microbial behaviour to single-cell activity rates, this project will offer invaluable information connecting the structure, dynamics and function of microbial consortia, and thereby provide robust insights into the basal ecological functioning that supports aquatic ecosystems.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019