Summary
Photonics will play a major, enabling role in the future of ICT and healthcare. However, to fulfill its potential and deliver on its promises, photonics will heavily rely on novel and more performing materials, that can be manufactured cheaply for the
specific requirements of photonic applications. To lead this “photonics revolution” and rip the societal benefits of being at the leading-edge of novel technological and scientific developments, the EC needs a highly-skilled scientific and technical workforce that can effectively implement the transition to a truly “knowledge-based society”.
SYNCHRONICS mission is to synergistically address both needs by training a pool of future science-leaders in the synthesis, characterisation and application to photonics of supramolecularly-engineered functional materials within state-of the-art photonic nanostructures fabricated thanks to the top-quality facilities and unique expertise available within the network. This kind of research requires an inter-multidisciplinary, intersectorial approach by specialized and skilled scientists from different disciplines, each one bringing a particular expertise: organic and supramolecular synthesis (UNI-OX,UNI-W, SURFLAY), theory (UNI-GE, IBM, UNI-GE), surface studies (UdS, UCL), photophysics (IIT, IBM, UCL, UNI-GE,UNI-CY, UNI-MO), device fabrication and characterisation (IBM, AMO, SURFLAY, UCL, IIT, UNI-PI, UNI-GE). The
SYNCHRONIX Network, through the trans-national and trans-disciplinary coordination and integration of these 12, highly specialised and internationally-leading teams, consolidates the European training efforts in the emerging area of both supramolecular nanoscience and nanophotonics. SYNCHRONICS will deliver 540 person-months of unparalleled multidisciplinary and intersectorial training that is carefully and intensively structured through local, network wide, and extra-network training in both scientific/technical topics, as well as complementary and managerial skills.
specific requirements of photonic applications. To lead this “photonics revolution” and rip the societal benefits of being at the leading-edge of novel technological and scientific developments, the EC needs a highly-skilled scientific and technical workforce that can effectively implement the transition to a truly “knowledge-based society”.
SYNCHRONICS mission is to synergistically address both needs by training a pool of future science-leaders in the synthesis, characterisation and application to photonics of supramolecularly-engineered functional materials within state-of the-art photonic nanostructures fabricated thanks to the top-quality facilities and unique expertise available within the network. This kind of research requires an inter-multidisciplinary, intersectorial approach by specialized and skilled scientists from different disciplines, each one bringing a particular expertise: organic and supramolecular synthesis (UNI-OX,UNI-W, SURFLAY), theory (UNI-GE, IBM, UNI-GE), surface studies (UdS, UCL), photophysics (IIT, IBM, UCL, UNI-GE,UNI-CY, UNI-MO), device fabrication and characterisation (IBM, AMO, SURFLAY, UCL, IIT, UNI-PI, UNI-GE). The
SYNCHRONIX Network, through the trans-national and trans-disciplinary coordination and integration of these 12, highly specialised and internationally-leading teams, consolidates the European training efforts in the emerging area of both supramolecular nanoscience and nanophotonics. SYNCHRONICS will deliver 540 person-months of unparalleled multidisciplinary and intersectorial training that is carefully and intensively structured through local, network wide, and extra-network training in both scientific/technical topics, as well as complementary and managerial skills.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/643238 |
Start date: | 01-01-2015 |
End date: | 31-12-2019 |
Total budget - Public funding: | 3 650 589,00 Euro - 3 650 589,00 Euro |
Cordis data
Original description
Photonics will play a major, enabling role in the future of ICT and healthcare. However, to fulfill its potential and deliver on its promises, photonics will heavily rely on novel and more performing materials, that can be manufactured cheaply for thespecific requirements of photonic applications. To lead this “photonics revolution” and rip the societal benefits of being at the leading-edge of novel technological and scientific developments, the EC needs a highly-skilled scientific and technical workforce that can effectively implement the transition to a truly “knowledge-based society”.
SYNCHRONICS mission is to synergistically address both needs by training a pool of future science-leaders in the synthesis, characterisation and application to photonics of supramolecularly-engineered functional materials within state-of the-art photonic nanostructures fabricated thanks to the top-quality facilities and unique expertise available within the network. This kind of research requires an inter-multidisciplinary, intersectorial approach by specialized and skilled scientists from different disciplines, each one bringing a particular expertise: organic and supramolecular synthesis (UNI-OX,UNI-W, SURFLAY), theory (UNI-GE, IBM, UNI-GE), surface studies (UdS, UCL), photophysics (IIT, IBM, UCL, UNI-GE,UNI-CY, UNI-MO), device fabrication and characterisation (IBM, AMO, SURFLAY, UCL, IIT, UNI-PI, UNI-GE). The
SYNCHRONIX Network, through the trans-national and trans-disciplinary coordination and integration of these 12, highly specialised and internationally-leading teams, consolidates the European training efforts in the emerging area of both supramolecular nanoscience and nanophotonics. SYNCHRONICS will deliver 540 person-months of unparalleled multidisciplinary and intersectorial training that is carefully and intensively structured through local, network wide, and extra-network training in both scientific/technical topics, as well as complementary and managerial skills.
Status
CLOSEDCall topic
MSCA-ITN-2014-ETNUpdate Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all