SAINT | Science and Innovation with thunderstorms

Summary
Lightning is an extremely energetic electric discharge process in our atmosphere. It significantly affects the concentration of greenhouse gases and it threatens electrical and electronic devices, in particular, when placed on elevated structures like wind turbines or aircraft, and when these structures are built with modern composite materials with inherently low electric conductivity. In addition, even our fundamental understanding of atmospheric electricity is far from complete. New discharge processes in the atmosphere above thunderstorms have been discovered, the so-called Transient Luminous Events (TLEs) in the stratosphere and mesosphere, and Terrestrial Gamma-ray Flashes (TGFs) that emit particle beams of antimatter. These phenomena demand thorough investigations, in geophysics and in the related fields of plasma and high-voltage technology where similar discharges appear.
These challenges are approached within the SAINT project with a multidisciplinary and inter-sectorial training platform for 15 ESRs. The platform brings together satellite and ground observations with modelling and lab experiments. It couples scientific studies to applications relevant to industries developing satellite data products, plasma discharge technologies, lightning detection systems and lightning protection devices.
With SAINT, we take advantage of the extraordinary opportunity presented by three simultaneous space missions with dedicated instruments to study lightning discharges, TLEs and TGFs, to integrate the unique space data with dedicated novel ground observations, model developments and lab experiments. SAINT will train the next generation of young, innovative scientists to shape the future of research and technology in Europe.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/722337
Start date: 01-03-2017
End date: 31-08-2021
Total budget - Public funding: 3 996 874,80 Euro - 3 996 874,00 Euro
Cordis data

Original description

Lightning is an extremely energetic electric discharge process in our atmosphere. It significantly affects the concentration of greenhouse gases and it threatens electrical and electronic devices, in particular, when placed on elevated structures like wind turbines or aircraft, and when these structures are built with modern composite materials with inherently low electric conductivity. In addition, even our fundamental understanding of atmospheric electricity is far from complete. New discharge processes in the atmosphere above thunderstorms have been discovered, the so-called Transient Luminous Events (TLEs) in the stratosphere and mesosphere, and Terrestrial Gamma-ray Flashes (TGFs) that emit particle beams of antimatter. These phenomena demand thorough investigations, in geophysics and in the related fields of plasma and high-voltage technology where similar discharges appear.
These challenges are approached within the SAINT project with a multidisciplinary and inter-sectorial training platform for 15 ESRs. The platform brings together satellite and ground observations with modelling and lab experiments. It couples scientific studies to applications relevant to industries developing satellite data products, plasma discharge technologies, lightning detection systems and lightning protection devices.
With SAINT, we take advantage of the extraordinary opportunity presented by three simultaneous space missions with dedicated instruments to study lightning discharges, TLEs and TGFs, to integrate the unique space data with dedicated novel ground observations, model developments and lab experiments. SAINT will train the next generation of young, innovative scientists to shape the future of research and technology in Europe.

Status

CLOSED

Call topic

MSCA-ITN-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2016
MSCA-ITN-2016