Stardust-R | Stardust Reloaded

Summary
The current amount of space debris in orbit combined with the expected increase in traffic due to future mega-constallations will have an unprecedented impact on the space environment, posing a serious question on its stability and resilience to any incident or anomalous event. Although statistically less likely to occur, an asteroid impact would have devastating consequences for our planet. Thus Stardust-R will address the growing need for a sustainable exploitation of space, the resilience of the space environment, the threat and opportunities coming from asteroids and comets and the compelling need for properly trained specialists who can tackle these issues.
The key scientific objectives are: 1) to globally characterise the dynamics of objects around the Earth to define disposal solutions, 2) to correlate spatially and temporally distant events and families of debris to their parent object, 3) to quantify uncertainty in celestial mechanics to accurately predict the probability of impact and collision and quantify the resilience of space systems and environment, 4) to develop AI tools and methods for space traffic management, 5) to define a criticality index for small asteroids to identify the need for exploration/characterisation, the possibility for exploitation and the method of deflection, 6) to develop a new distribution model for small size asteroids, 7) to develop systems and algorithms to explore and land on minor bodies with autonomous nano-spacecraft.
These objectives will be achieved via 15 projects developed by 15 Early Stage Researchers who will be trained in math phyisics, computer science and aerospace engineering to provide effective solutions to make the space environment resilient, space exploitation sustainable, learn more about minor bodies and ultimately protect Earth and our space assets.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/813644
Start date: 01-01-2019
End date: 30-06-2023
Total budget - Public funding: 3 867 284,52 Euro - 3 867 284,00 Euro
Cordis data

Original description

The current amount of space debris in orbit combined with the expected increase in traffic due to future mega-constallations will have an unprecedented impact on the space environment, posing a serious question on its stability and resilience to any incident or anomalous event. Although statistically less likely to occur, an asteroid impact would have devastating consequences for our planet. Thus Stardust-R will address the growing need for a sustainable exploitation of space, the resilience of the space environment, the threat and opportunities coming from asteroids and comets and the compelling need for properly trained specialists who can tackle these issues.
The key scientific objectives are: 1) to globally characterise the dynamics of objects around the Earth to define disposal solutions, 2) to correlate spatially and temporally distant events and families of debris to their parent object, 3) to quantify uncertainty in celestial mechanics to accurately predict the probability of impact and collision and quantify the resilience of space systems and environment, 4) to develop AI tools and methods for space traffic management, 5) to define a criticality index for small asteroids to identify the need for exploration/characterisation, the possibility for exploitation and the method of deflection, 6) to develop a new distribution model for small size asteroids, 7) to develop systems and algorithms to explore and land on minor bodies with autonomous nano-spacecraft.
These objectives will be achieved via 15 projects developed by 15 Early Stage Researchers who will be trained in math phyisics, computer science and aerospace engineering to provide effective solutions to make the space environment resilient, space exploitation sustainable, learn more about minor bodies and ultimately protect Earth and our space assets.

Status

CLOSED

Call topic

MSCA-ITN-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)