JQ4LHC | Jet quenching for heavy-ion collisions at the LHC

Summary
The characterization of the quark gluon plasma (QGP) created in heavy-ion collisions (HICs) is the main goal of heavy-ion experimental programs at the Relativistic Heavy Ion Collider (RHIC) at BNL (USA) and at the Large Hadron Collider (LHC) at CERN. Jet quenching, the modification of jets in a colored medium, is one of the most successful tools to probe the QGP. This proposal aims to provide an interpretational framework for jet quenching that maximizes the discovery potential of the current (and future) precision era of HICs.

Since the study of jets in the presence of a medium is challenging, we still lack a first-principles formalism for jets in HICs. In contrast, a wide variety of jet quenching Monte Carlos (MCs) are available, but they rely on phenomenological assumptions making difficult to interpret their outcomes. It is proposed here to develop the first jet quenching bottom-up formalism based on first principles. This will be done by generalizing from single hadrons to jets a previous implementation by the experienced researcher (ER), including different phenomena as coherence. This analytical approach will become a unique tool to describe the QGP and benchmark the mainstream MCs.

The theory of jet quenching has been developed assuming a QGP in thermal equilibrium. Recently, the ER has shown for the first time that jets in HICs are sensitive to the pre-equilibrium dynamics of the evolution. This finding paves the way for a completely novel line of research in HICs, whose ambitious goal is to access these poorly understood initial stages with jet quenching observables. This proposal will provide the foundations for such an effort by phenomenologically analyzing the possible explanations to this finding and by computing color field configurations for the initial stages in the Glasma approach.

This project will be developed at the leading institution École Polytechnique and will enhance the skills, career prospects and network of collaborators of the ER.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/893021
Start date: 01-09-2021
End date: 31-08-2023
Total budget - Public funding: 196 707,84 Euro - 196 707,00 Euro
Cordis data

Original description

The characterization of the quark gluon plasma (QGP) created in heavy-ion collisions (HICs) is the main goal of heavy-ion experimental programs at the Relativistic Heavy Ion Collider (RHIC) at BNL (USA) and at the Large Hadron Collider (LHC) at CERN. Jet quenching, the modification of jets in a colored medium, is one of the most successful tools to probe the QGP. This proposal aims to provide an interpretational framework for jet quenching that maximizes the discovery potential of the current (and future) precision era of HICs.

Since the study of jets in the presence of a medium is challenging, we still lack a first-principles formalism for jets in HICs. In contrast, a wide variety of jet quenching Monte Carlos (MCs) are available, but they rely on phenomenological assumptions making difficult to interpret their outcomes. It is proposed here to develop the first jet quenching bottom-up formalism based on first principles. This will be done by generalizing from single hadrons to jets a previous implementation by the experienced researcher (ER), including different phenomena as coherence. This analytical approach will become a unique tool to describe the QGP and benchmark the mainstream MCs.

The theory of jet quenching has been developed assuming a QGP in thermal equilibrium. Recently, the ER has shown for the first time that jets in HICs are sensitive to the pre-equilibrium dynamics of the evolution. This finding paves the way for a completely novel line of research in HICs, whose ambitious goal is to access these poorly understood initial stages with jet quenching observables. This proposal will provide the foundations for such an effort by phenomenologically analyzing the possible explanations to this finding and by computing color field configurations for the initial stages in the Glasma approach.

This project will be developed at the leading institution École Polytechnique and will enhance the skills, career prospects and network of collaborators of the ER.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019