NanED | Electron Nanocrystallography

Summary
The atomic structure determination of inorganic, organic and macromolecular compounds is a hard challenge anytime the crystal size falls below the micron range, becoming no more suitable for single-crystal x-ray diffraction. Still, a number of chemicals with valuable commercial and medical implications can be synthesized only as nanocrystals or show phase/polymorphic transitions during crystal growth. The development of more efficient tools able to disclose the nature of nanocrystalline materials is therefore a hot and transversal topic that links materials science, physics of diffraction, new instrument engineering, chemical production and pharmacology.
Electron diffraction (ED) allows extracting structure information from single nanometric crystals. ED experienced a tremendous boost after the development of 3D routines for data collection, up to be enlisted among the main breakthroughs in Science. However, the development of 3D ED is still limited to few laboratories and is slowed by the lack of dedicated instrumentation.
NanED aims to form a new generation of electron crystallographers, able to master and develop 3D ED techniques in an interdisciplinary and interconnected network, where competences and know-how of usually distant scientific sectors are shared and merged. NanED will gather all European scientists hitherto active in 3D ED development and a pool of large and small companies interested in instrument development and material or pharmaceutical production.
NanED will deliver portable procedures for sample preparation, data collection and data analysis, suitable for the successful application of 3D ED to all kinds of compounds. NanED will also establish a new standard of crystallographic training, closer to nowadays industrial needs. Finally, NanED will favor the dissemination of 3D ED in academic and industrial laboratories, pushing Europe to be the leader for nanomaterial characterisation and development, with a noticeable and global economic impact.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/956099
Start date: 01-03-2021
End date: 31-08-2025
Total budget - Public funding: 3 936 311,97 Euro - 3 936 311,00 Euro
Cordis data

Original description

The atomic structure determination of inorganic, organic and macromolecular compounds is a hard challenge anytime the crystal size falls below the micron range, becoming no more suitable for single-crystal x-ray diffraction. Still, a number of chemicals with valuable commercial and medical implications can be synthesized only as nanocrystals or show phase/polymorphic transitions during crystal growth. The development of more efficient tools able to disclose the nature of nanocrystalline materials is therefore a hot and transversal topic that links materials science, physics of diffraction, new instrument engineering, chemical production and pharmacology.
Electron diffraction (ED) allows extracting structure information from single nanometric crystals. ED experienced a tremendous boost after the development of 3D routines for data collection, up to be enlisted among the main breakthroughs in Science. However, the development of 3D ED is still limited to few laboratories and is slowed by the lack of dedicated instrumentation.
NanED aims to form a new generation of electron crystallographers, able to master and develop 3D ED techniques in an interdisciplinary and interconnected network, where competences and know-how of usually distant scientific sectors are shared and merged. NanED will gather all European scientists hitherto active in 3D ED development and a pool of large and small companies interested in instrument development and material or pharmaceutical production.
NanED will deliver portable procedures for sample preparation, data collection and data analysis, suitable for the successful application of 3D ED to all kinds of compounds. NanED will also establish a new standard of crystallographic training, closer to nowadays industrial needs. Finally, NanED will favor the dissemination of 3D ED in academic and industrial laboratories, pushing Europe to be the leader for nanomaterial characterisation and development, with a noticeable and global economic impact.

Status

SIGNED

Call topic

MSCA-ITN-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2020
MSCA-ITN-2020