CHARTIST | Chiral Metamaterials for THz Polarisation Control

Summary
Based on chiral metamaterials and metasurfaces enhanced by graphene and carbon nanotubes, this project aims at providing theoretical basis, performing proof of concept experiments, and building a prototype device for unprecedented dynamic control of THz-wave polarization. The project relies on solid theoretical background that will enable analytical and numerical modelling interaction of the THz radiation with chiral metamaterials and metasurfaces and will also reveal the most promising techniques to control helicity in the THz range by external stimuli. The chiral metamaterials and metasurfaces will be fabricated by advance fabrication techniques including femtosecond micromachining of multilayer substrates, molecular beam epitaxy and e-beam lithography. The enhancing of the fabricated chiral structures with graphene will provide additional channels for manipulating the helicity-sensitive transmittance and reflectivity, which can be employed for the THz polarization control. The proposed research program implemented via intersectoral and international mobility and connected training, dissemination and outreach activities will enable the knowledge and technology transfer, wider professional networking, acquiring new skills and exploitation of project results by European THz industry. In parallel, the world-wide professional CHARTIST network will considerably enhance the future career prospects of early stage researchers and widen the professional opportunities for experienced researchers involved.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101007896
Start date: 01-10-2021
End date: 31-03-2026
Total budget - Public funding: 745 200,00 Euro - 726 800,00 Euro
Cordis data

Original description

Based on chiral metamaterials and metasurfaces enhanced by graphene and carbon nanotubes, this project aims at providing theoretical basis, performing proof of concept experiments, and building a prototype device for unprecedented dynamic control of THz-wave polarization. The project relies on solid theoretical background that will enable analytical and numerical modelling interaction of the THz radiation with chiral metamaterials and metasurfaces and will also reveal the most promising techniques to control helicity in the THz range by external stimuli. The chiral metamaterials and metasurfaces will be fabricated by advance fabrication techniques including femtosecond micromachining of multilayer substrates, molecular beam epitaxy and e-beam lithography. The enhancing of the fabricated chiral structures with graphene will provide additional channels for manipulating the helicity-sensitive transmittance and reflectivity, which can be employed for the THz polarization control. The proposed research program implemented via intersectoral and international mobility and connected training, dissemination and outreach activities will enable the knowledge and technology transfer, wider professional networking, acquiring new skills and exploitation of project results by European THz industry. In parallel, the world-wide professional CHARTIST network will considerably enhance the future career prospects of early stage researchers and widen the professional opportunities for experienced researchers involved.

Status

SIGNED

Call topic

MSCA-RISE-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.3. Stimulating innovation by means of cross-fertilisation of knowledge
H2020-MSCA-RISE-2020
MSCA-RISE-2020