UMBRELLE | Understanding mechanisms behind reliable future extreme precipitation estimation over Europe

Summary
Extreme precipitation events are among the most damaging climate extremes worldwide. Globally, precipitation extremes are expected to intensify as the climate warms, however, Europe stands out as a region with weak confidence in future extreme precipitation changes. Our lack of knowledge is explained by the variety of mechanisms at play, from local to hemispheric scales, and by two persisting limitations: the deep convection not explicitly resolved in climate models and large uncertainties in future regional atmospheric circulation changes.
UMBRELLE aims to characterise the evolution of precipitation extremes over the 21st century in Europe and to provide more reliable projected changes by better understanding the physical mechanisms at play. Innovative modelling experiments are proposed to explore how observed extreme precipitation case studies could respond to climate change and what mechanisms control the future changes. To that end, novel data, tools and methods will be exploited through the use of high-spatial convection-permitting regional climate modelling for the realistic simulation of extreme precipitation that will be combined with the emergent ‘storylines’ approach to identify plausible future pathways for regional atmospheric circulation from a large ensemble of state-of-the-art Earth System Models.
The original framework offered by UMBRELLE will allow a leap in our understanding of the regional impacts of climate change on extreme precipitation. It directly addresses each of the two current limitations in our knowledge and provides an innovative way to bridge the gap between the fine scale explicit simulation of precipitation and the most comprehensive simulation of the climate system in order to benefit from their respective strengths and latest advances. This project proposes ambitious research that will not only address one of the most pressing issues affecting the global research community but will be of profound societal benefit.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101027577
Start date: 01-01-2022
End date: 31-12-2023
Total budget - Public funding: 196 707,84 Euro - 128 953,00 Euro
Cordis data

Original description

Extreme precipitation events are among the most damaging climate extremes worldwide. Globally, precipitation extremes are expected to intensify as the climate warms, however, Europe stands out as a region with weak confidence in future extreme precipitation changes. Our lack of knowledge is explained by the variety of mechanisms at play, from local to hemispheric scales, and by two persisting limitations: the deep convection not explicitly resolved in climate models and large uncertainties in future regional atmospheric circulation changes.
UMBRELLE aims to characterise the evolution of precipitation extremes over the 21st century in Europe and to provide more reliable projected changes by better understanding the physical mechanisms at play. Innovative modelling experiments are proposed to explore how observed extreme precipitation case studies could respond to climate change and what mechanisms control the future changes. To that end, novel data, tools and methods will be exploited through the use of high-spatial convection-permitting regional climate modelling for the realistic simulation of extreme precipitation that will be combined with the emergent ‘storylines’ approach to identify plausible future pathways for regional atmospheric circulation from a large ensemble of state-of-the-art Earth System Models.
The original framework offered by UMBRELLE will allow a leap in our understanding of the regional impacts of climate change on extreme precipitation. It directly addresses each of the two current limitations in our knowledge and provides an innovative way to bridge the gap between the fine scale explicit simulation of precipitation and the most comprehensive simulation of the climate system in order to benefit from their respective strengths and latest advances. This project proposes ambitious research that will not only address one of the most pressing issues affecting the global research community but will be of profound societal benefit.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)