OMT | OMT - Optomechanical Technologies

Summary
The proposed project is built on the successful training and research experience of the leading European research groups
working in the field of cavity optomechanics. Our ENT unites a total of 14 leading groups in the field, of which two are major industrial players that utilize MEMS and NEMS - Bosch and IBM. The main goal of the project is to exploit optomechanical interactions in views of novel functionality and possible applications of cavity optomechanical systems that were envisioned by consortium partners during their previous research activities.
The possible applications include for instance MEMS sensors based on two-dimensional materials like graphene, quantum limited microwave amplifiers, and low noise optical to microwave frequency photon converters. While the majority of the experiments will firmly reside in the realm of classical, albeit weak, signals or fields, the aspired performance will also allow exploiting schemes in scenarios where quantum nature of the signal is relevant.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/722923
Start date: 01-10-2016
End date: 30-09-2020
Total budget - Public funding: 3 897 443,25 Euro - 3 897 443,00 Euro
Cordis data

Original description

The proposed project is built on the successful training and research experience of the leading European research groups
working in the field of cavity optomechanics. Our ENT unites a total of 14 leading groups in the field, of which two are major industrial players that utilize MEMS and NEMS - Bosch and IBM. The main goal of the project is to exploit optomechanical interactions in views of novel functionality and possible applications of cavity optomechanical systems that were envisioned by consortium partners during their previous research activities.
The possible applications include for instance MEMS sensors based on two-dimensional materials like graphene, quantum limited microwave amplifiers, and low noise optical to microwave frequency photon converters. While the majority of the experiments will firmly reside in the realm of classical, albeit weak, signals or fields, the aspired performance will also allow exploiting schemes in scenarios where quantum nature of the signal is relevant.

Status

CLOSED

Call topic

MSCA-ITN-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2016
MSCA-ITN-2016