Summary
Nuclear magnetic resonance (NMR) is a powerful technique employed in many areas of modern science and industry. While a seemingly indispensable element of NMR is a strong (>5 T) magnetic field, recent progress in physics and chemistry have enabled detection of NMR signals at ultra-low and truly zero magnetic fields. This completely reverses conditions under which spin-dynamics are investigated and gives access to information unavailable in conventional NMR. A secondary horizon is microscopic low-field magnetic sensors that probe NMR signals of a single molecule, and provide interesting information about molecular dynamics and structures not accessible with conventional NMR. The address of specific molecular sites is a step towards realizing single-molecule quantum information storage.
In project ZULF, for the first time, we plan to connect experts of non-conventional NMR to create a network of zero- and ultra-low-field (ZULF) NMR science. We will gather and synergize scientists working on NMR J-spectroscopy, NMR hyperpolarization, ultra-precise and small-scale magnetometry to enhance the field and train a new generation of NMR researchers. Close collaboration with industry will address important challenges of modern NMR. Through frequent meetings, secondments, workshops, and a summer school the early-stage researchers (ESRs) will receive a unique training program on the most modern and advanced aspects of ZULF NMR that is unavailable in any current university course. The network covers a diverse range of projects aimed at bringing the technique to the next level, including spectrometer development, single-molecule detection, analytical chemistry, medical contrast agent imaging and exotic-physics searches.
In project ZULF, for the first time, we plan to connect experts of non-conventional NMR to create a network of zero- and ultra-low-field (ZULF) NMR science. We will gather and synergize scientists working on NMR J-spectroscopy, NMR hyperpolarization, ultra-precise and small-scale magnetometry to enhance the field and train a new generation of NMR researchers. Close collaboration with industry will address important challenges of modern NMR. Through frequent meetings, secondments, workshops, and a summer school the early-stage researchers (ESRs) will receive a unique training program on the most modern and advanced aspects of ZULF NMR that is unavailable in any current university course. The network covers a diverse range of projects aimed at bringing the technique to the next level, including spectrometer development, single-molecule detection, analytical chemistry, medical contrast agent imaging and exotic-physics searches.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/766402 |
Start date: | 01-02-2018 |
End date: | 31-07-2022 |
Total budget - Public funding: | 2 769 371,28 Euro - 2 769 371,00 Euro |
Cordis data
Original description
Nuclear magnetic resonance (NMR) is a powerful technique employed in many areas of modern science and industry. While a seemingly indispensable element of NMR is a strong (>5 T) magnetic field, recent progress in physics and chemistry have enabled detection of NMR signals at ultra-low and truly zero magnetic fields. This completely reverses conditions under which spin-dynamics are investigated and gives access to information unavailable in conventional NMR. A secondary horizon is microscopic low-field magnetic sensors that probe NMR signals of a single molecule, and provide interesting information about molecular dynamics and structures not accessible with conventional NMR. The address of specific molecular sites is a step towards realizing single-molecule quantum information storage.In project ZULF, for the first time, we plan to connect experts of non-conventional NMR to create a network of zero- and ultra-low-field (ZULF) NMR science. We will gather and synergize scientists working on NMR J-spectroscopy, NMR hyperpolarization, ultra-precise and small-scale magnetometry to enhance the field and train a new generation of NMR researchers. Close collaboration with industry will address important challenges of modern NMR. Through frequent meetings, secondments, workshops, and a summer school the early-stage researchers (ESRs) will receive a unique training program on the most modern and advanced aspects of ZULF NMR that is unavailable in any current university course. The network covers a diverse range of projects aimed at bringing the technique to the next level, including spectrometer development, single-molecule detection, analytical chemistry, medical contrast agent imaging and exotic-physics searches.
Status
CLOSEDCall topic
MSCA-ITN-2017Update Date
28-04-2024
Images
No images available.
Geographical location(s)