Summary
To understand our cosmic origins requires understanding the formation of the Galaxy, which in turn requires precise characterization of its fundamental building blocks: stars. The essential nature of this knowledge has driven the Gaia and TESS space telescope missions, but to take full advantage of this, our estimates of non-observable stellar properties must improve at pace. The proposed project uses the unprecedented data volume and accuracy from Gaia and TESS and the Experienced Researcher (ER), Dr Joyce’s knowledge of multiple theoretical dating techniques to derive the best ages possible for stars in the Milky Way. The ER will use stellar structure and evolution models, stellar oscillation programs, isochrones, and novel data science techniques to provide ages for oscillating binaries, metal-poor stars, Gaia benchmark stars, and exotic variables across the mass spectrum. Whereas most stellar modelers specialize in particular stars, the ER is unique in the breadth of her repertoire. Dr. Joyce’s theoretical expertise is the ideal complement to the world-class observers at Konkoly Observatory, whose interests also span a wide range of stellar types. Her supervisor and long-time collaborator, Dr László Molnár, is an expert in stellar variability, member of the TESS and Gaia consortia, and recently tenured academic at Konkoly Observatory, CSFK, an institution with which the ER has long-standing rapport and many other collaborators. The supervisor of her secondment at KU Leuven, Prof. Conny Aerts, is one of the founders and world leaders of the field of asteroseismology. The ER’s role on the development team of the widely used, open-source Modules for Experiments in Stellar Astrophysics (MESA) program will allow her to build broadly applicable and freely disseminated tools with high efficiency. In return, Konkoly Observatory will benefit strongly from the presence of a MESA developer, thus facilitating the transfer of theoretical knowledge as well as technical skill.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101038062 |
Start date: | 01-09-2022 |
End date: | 31-08-2024 |
Total budget - Public funding: | 151 850,88 Euro - 151 850,00 Euro |
Cordis data
Original description
To understand our cosmic origins requires understanding the formation of the Galaxy, which in turn requires precise characterization of its fundamental building blocks: stars. The essential nature of this knowledge has driven the Gaia and TESS space telescope missions, but to take full advantage of this, our estimates of non-observable stellar properties must improve at pace. The proposed project uses the unprecedented data volume and accuracy from Gaia and TESS and the Experienced Researcher (ER), Dr Joyce’s knowledge of multiple theoretical dating techniques to derive the best ages possible for stars in the Milky Way. The ER will use stellar structure and evolution models, stellar oscillation programs, isochrones, and novel data science techniques to provide ages for oscillating binaries, metal-poor stars, Gaia benchmark stars, and exotic variables across the mass spectrum. Whereas most stellar modelers specialize in particular stars, the ER is unique in the breadth of her repertoire. Dr. Joyce’s theoretical expertise is the ideal complement to the world-class observers at Konkoly Observatory, whose interests also span a wide range of stellar types. Her supervisor and long-time collaborator, Dr László Molnár, is an expert in stellar variability, member of the TESS and Gaia consortia, and recently tenured academic at Konkoly Observatory, CSFK, an institution with which the ER has long-standing rapport and many other collaborators. The supervisor of her secondment at KU Leuven, Prof. Conny Aerts, is one of the founders and world leaders of the field of asteroseismology. The ER’s role on the development team of the widely used, open-source Modules for Experiments in Stellar Astrophysics (MESA) program will allow her to build broadly applicable and freely disseminated tools with high efficiency. In return, Konkoly Observatory will benefit strongly from the presence of a MESA developer, thus facilitating the transfer of theoretical knowledge as well as technical skill.Status
SIGNEDCall topic
WF-03-2020Update Date
18-11-2024
Images
No images available.
Geographical location(s)