ProEMiBiL | Ethanol production from microalgae and lignocellulosic biomass.

Summary
The European Union (EU) set-out an ambitious but achievable plan that by 2030 up to one-quarter of the total transport fuel demand should be met by clean and CO2-efficient biofuels to curb greenhouse gas emissions (GHG) from fossil fuels and its impact on global climate change. The EU 2006 Biofuel policy has clearly stated that the search for alternative pathways for renewable energy sources will result in considerable growth in biofuel technologies and industry sectors in the coming years. Therefore, sustainable, energy efficient and innovative technologies are needed to produce biofuels from a wide range of raw materials feedstocks while adhering to the societal, economic and environmental norms of the EU. As an alternative to this conflict, the exploitation of new materials, such as residual biomass of lignocellulosic nature and aquatic (microalgae), can be an important strategy for the reconciliation of economic growth and environmental sustainability in the long term. Lignocellulosic biomass (LCB) produced from agricultural and forestry residues including, among others, sugarcane bagasse have been considered as a generous source, which does not compete with food requirements and is one of the most abundant and promising biomass sources in the world, obtained from the processing of sugarcane. Microalgae are primitive plant organisms with no roots, stems or leaves, that can be found in all terrestrial ecosystems. Microalgal biomass is frequently rich in fatty acids, of which polyunsaturated fatty acids, carbohydrates, proteins, antioxidants, minerals, and vitamins such as riboflavin, thiamine, carotene and folic acid, among others are of high value. From the above, this project proposes the bioethanol production from a biomass mixture of the microalgae Chlorella zofingiensis and lignocellulosic hydrolysate sugarcane bagasse, focusing on the development of a fermentation technology to convert the pentoses and hexoses present in the biomass to bioethanol.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/867473
Start date: 01-06-2019
End date: 31-05-2021
Total budget - Public funding: 98 507,52 Euro - 98 507,00 Euro
Cordis data

Original description

The European Union (EU) set-out an ambitious but achievable plan that by 2030 up to one-quarter of the total transport fuel demand should be met by clean and CO2-efficient biofuels to curb greenhouse gas emissions (GHG) from fossil fuels and its impact on global climate change. The EU 2006 Biofuel policy has clearly stated that the search for alternative pathways for renewable energy sources will result in considerable growth in biofuel technologies and industry sectors in the coming years. Therefore, sustainable, energy efficient and innovative technologies are needed to produce biofuels from a wide range of raw materials feedstocks while adhering to the societal, economic and environmental norms of the EU. As an alternative to this conflict, the exploitation of new materials, such as residual biomass of lignocellulosic nature and aquatic (microalgae), can be an important strategy for the reconciliation of economic growth and environmental sustainability in the long term. Lignocellulosic biomass (LCB) produced from agricultural and forestry residues including, among others, sugarcane bagasse have been considered as a generous source, which does not compete with food requirements and is one of the most abundant and promising biomass sources in the world, obtained from the processing of sugarcane. Microalgae are primitive plant organisms with no roots, stems or leaves, that can be found in all terrestrial ecosystems. Microalgal biomass is frequently rich in fatty acids, of which polyunsaturated fatty acids, carbohydrates, proteins, antioxidants, minerals, and vitamins such as riboflavin, thiamine, carotene and folic acid, among others are of high value. From the above, this project proposes the bioethanol production from a biomass mixture of the microalgae Chlorella zofingiensis and lignocellulosic hydrolysate sugarcane bagasse, focusing on the development of a fermentation technology to convert the pentoses and hexoses present in the biomass to bioethanol.

Status

CLOSED

Call topic

WF-01-2018

Update Date

17-05-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.4. SPREADING EXCELLENCE AND WIDENING PARTICIPATION
H2020-EU.4.0. Cross-cutting call topics
H2020-WF-01-2018
WF-01-2018