EBMPerform | High-quality, high-speed EBM 3D printing by the integration of high-performance electron sources

Summary
Background:
Production of high integrity components in Europe must use smart manufacturing methods to be efficient in use of scarce materials and other resources, and must ensure its environmental impact is minimised. Advanced manufacturing techniques, such as metal powder bed 3D printing, can ensure that production of aerospace parts is carried out with resource efficiency. However, such techniques are today struggling with technical and reliability consistency for use in production. Arcam is a Swedish SME who uniquely design and supply electron beam additive manufacturing (EBM) machines.
Objective:
The aim of this work is to overcome key obstacles concerning future requirements for EBM 3D printing for production of aerospace parts through the integration of two enabling technologies. The work will develop and integrate a novel plasma cathode electron source with an EBM machine focusing on realising the enhanced capabilities of low maintenance, consistent manufacturing performance and higher productivity. Also, development and integration of an array probe device will provide quantified quality assurance of machine manufacturing readiness. The key research challenges will be the design of the electron source and optics and the development of new build procedures making best use of the new source.
Expected Results
The verified design of a plasma cathode electron source will enable high integrity 3D printing of metal parts. Arcam will supply equipment with this technology to large industrial companies for efficient production of parts. The equipment will enable the wider adoption of EBM leading to efficient use of materials – particularly strategic titanium alloys and nickel based super alloys at first. Increased equipment sales are expected to boost Arcam’s growth over the next 5-10 years leading to faster adoption of 3D printing for large scale production. The results will be disseminated to existing and potential end-user clients in aerospace and other sectors.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/666788
Start date: 01-08-2015
End date: 31-10-2019
Total budget - Public funding: 2 494 400,00 Euro - 1 648 035,00 Euro
Cordis data

Original description

Background:
Production of high integrity components in Europe must use smart manufacturing methods to be efficient in use of scarce materials and other resources, and must ensure its environmental impact is minimised. Advanced manufacturing techniques, such as metal powder bed 3D printing, can ensure that production of aerospace parts is carried out with resource efficiency. However, such techniques are today struggling with technical and reliability consistency for use in production. Arcam is a Swedish SME who uniquely design and supply electron beam additive manufacturing (EBM) machines.
Objective:
The aim of this work is to overcome key obstacles concerning future requirements for EBM 3D printing for production of aerospace parts through the integration of two enabling technologies. The work will develop and integrate a novel plasma cathode electron source with an EBM machine focusing on realising the enhanced capabilities of low maintenance, consistent manufacturing performance and higher productivity. Also, development and integration of an array probe device will provide quantified quality assurance of machine manufacturing readiness. The key research challenges will be the design of the electron source and optics and the development of new build procedures making best use of the new source.
Expected Results
The verified design of a plasma cathode electron source will enable high integrity 3D printing of metal parts. Arcam will supply equipment with this technology to large industrial companies for efficient production of parts. The equipment will enable the wider adoption of EBM leading to efficient use of materials – particularly strategic titanium alloys and nickel based super alloys at first. Increased equipment sales are expected to boost Arcam’s growth over the next 5-10 years leading to faster adoption of 3D printing for large scale production. The results will be disseminated to existing and potential end-user clients in aerospace and other sectors.

Status

CLOSED

Call topic

NMP-25-2014

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.2. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies
H2020-EU.2.1.2.0. INDUSTRIAL LEADERSHIP - Nanotechnologies - Cross-cutting call topics
H2020-SMEINST-2-2014
NMP-25-2014 Accelerating the uptake of nanotechnologies, advanced materials or advanced manufacturing and processing technologies by SMEs
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.1. Mainstreaming SME support, especially through a dedicated instrument
H2020-SMEINST-2-2014
NMP-25-2014 Accelerating the uptake of nanotechnologies, advanced materials or advanced manufacturing and processing technologies by SMEs