Cell2Carbox | Thermocatalytic conversion of Cellulosic biomass to Furan-2,5-dicarboxylic acid (FDCA) over Single-atom based catalyst

Summary
Furan-2,5-dicarboxylic acid (FDCA) is a biobased product and an important chemical building block. It has a huge potential as a substitute for a variety of petrochemicals, such as terephthalic acid and adipic acid. It is highly important for the pharma industry as it is being used in biopolymer industries to make polyesters, polyurethanes, and polyamides. Currently, avantium process is the only established industrial process consisting of the catalytic dehydration of carbohydrates to alkoxymethylfurfural (RMF) which is further oxidized to the sodium salt of FDCA using homogenous catalytic system. Using the homogeneous catalytic system for oxidation process followed by the alkaline solution for separation process makes the process more expensive and less eco-friendly. However, base-free systems lead to low yield and selectivity, therefore extensive research is required for exploring a new heterogenous catalytic system. Direct utilization of cellulosic biomass as a feedstock over the multifunctional heterogeneous catalytic system will improve the economic feasibility with optimized production technologies, as these are abundantly available at a low cost. I will achieve this goal by designing a multifunctional catalyst with the combined effect of acid, base and metal sites as a single atomic site. Cell2Carbox project aims to develop unique and sustainable catalytic processes for FDCA production from an inexpensive and highly abundant cellulosic biomass using multifunctional heterogeneous SACs (Single-atom based catalyst) system. Besides, the project comprises a program for my professional growth by training-through-research in heterogeneous catalysis and for the development of complementary skills. Strengthened by this experience, I will become independent expert in the process development for biomass valorization, as of major scientific importance in the coming decades as it is postulated in the EU Vision The circular bio-society in 2050.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101003438
Start date: 01-02-2021
End date: 30-06-2023
Total budget - Public funding: 162 040,32 Euro - 162 040,00 Euro
Cordis data

Original description

Furan-2,5-dicarboxylic acid (FDCA) is a biobased product and an important chemical building block. It has a huge potential as a substitute for a variety of petrochemicals, such as terephthalic acid and adipic acid. It is highly important for the pharma industry as it is being used in biopolymer industries to make polyesters, polyurethanes, and polyamides. Currently, avantium process is the only established industrial process consisting of the catalytic dehydration of carbohydrates to alkoxymethylfurfural (RMF) which is further oxidized to the sodium salt of FDCA using homogenous catalytic system. Using the homogeneous catalytic system for oxidation process followed by the alkaline solution for separation process makes the process more expensive and less eco-friendly. However, base-free systems lead to low yield and selectivity, therefore extensive research is required for exploring a new heterogenous catalytic system. Direct utilization of cellulosic biomass as a feedstock over the multifunctional heterogeneous catalytic system will improve the economic feasibility with optimized production technologies, as these are abundantly available at a low cost. I will achieve this goal by designing a multifunctional catalyst with the combined effect of acid, base and metal sites as a single atomic site. Cell2Carbox project aims to develop unique and sustainable catalytic processes for FDCA production from an inexpensive and highly abundant cellulosic biomass using multifunctional heterogeneous SACs (Single-atom based catalyst) system. Besides, the project comprises a program for my professional growth by training-through-research in heterogeneous catalysis and for the development of complementary skills. Strengthened by this experience, I will become independent expert in the process development for biomass valorization, as of major scientific importance in the coming decades as it is postulated in the EU Vision The circular bio-society in 2050.

Status

TERMINATED

Call topic

WF-02-2019

Update Date

17-05-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.4. SPREADING EXCELLENCE AND WIDENING PARTICIPATION
H2020-EU.4.0. Cross-cutting call topics
H2020-WF-02-2019
WF-02-2019