CASCARA | Uncovering and understanding differences in health behaviours in people with diabetes

Summary
Diabetes causes a large and unevenly distributed health and economic burden within the population living with diabetes. Improved health behaviours have the potential to avert a large share of morbidity and mortality attributable to diabetes. However, adherence to recommended self-management remains challenging for many patients. This may (at least partly) explain the large overall disease burden in people with diabetes, as well as how that burden is distributed among patients. A better understanding of the patient and community level characteristics that affect behaviour change can inform more personalised, more effective health interventions that stimulate positive health behaviour changes, in turn reducing the overall burden associated with diabetes.
CASCARA aims to provide novel and much needed evidence on characteristics predictive of (1) health behaviour change subsequent to a diabetes diagnosis and (2) of the resulting changes in diabetes complication risk factors. To achieve this, I will use causal econometric and epidemiologic methods as well as machine learning (ML) and causal mediation analysis. The commonly recommended behaviour changes I focus on comprise: improving diet, increasing physical activity, reducing smoking and alcohol consumption. In particular, CASCARA will address the following research objectives using longitudinal observational data from continental Europe, the UK and the US:
1. Investigate the effect of a diabetes diagnosis on health behaviours and potential heterogeneities across gender and socioeconomic status
2. Use of ML to identify potentially unanticipated socioeconomic, demographic and clinical characteristics affecting health behaviour change, for a more detailed understanding of its potential drivers
3. Use causal mediation analysis to identify the impact of different health behaviour changes on risk factors for diabetes complications (body mass index, hypertension status and blood glucose levels) post-diabetes diagnosis.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101038046
Start date: 01-10-2021
End date: 30-09-2023
Total budget - Public funding: 178 320,00 Euro - 178 320,00 Euro
Cordis data

Original description

Diabetes causes a large and unevenly distributed health and economic burden within the population living with diabetes. Improved health behaviours have the potential to avert a large share of morbidity and mortality attributable to diabetes. However, adherence to recommended self-management remains challenging for many patients. This may (at least partly) explain the large overall disease burden in people with diabetes, as well as how that burden is distributed among patients. A better understanding of the patient and community level characteristics that affect behaviour change can inform more personalised, more effective health interventions that stimulate positive health behaviour changes, in turn reducing the overall burden associated with diabetes.
CASCARA aims to provide novel and much needed evidence on characteristics predictive of (1) health behaviour change subsequent to a diabetes diagnosis and (2) of the resulting changes in diabetes complication risk factors. To achieve this, I will use causal econometric and epidemiologic methods as well as machine learning (ML) and causal mediation analysis. The commonly recommended behaviour changes I focus on comprise: improving diet, increasing physical activity, reducing smoking and alcohol consumption. In particular, CASCARA will address the following research objectives using longitudinal observational data from continental Europe, the UK and the US:
1. Investigate the effect of a diabetes diagnosis on health behaviours and potential heterogeneities across gender and socioeconomic status
2. Use of ML to identify potentially unanticipated socioeconomic, demographic and clinical characteristics affecting health behaviour change, for a more detailed understanding of its potential drivers
3. Use causal mediation analysis to identify the impact of different health behaviour changes on risk factors for diabetes complications (body mass index, hypertension status and blood glucose levels) post-diabetes diagnosis.

Status

TERMINATED

Call topic

WF-03-2020

Update Date

17-05-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.4. SPREADING EXCELLENCE AND WIDENING PARTICIPATION
H2020-EU.4.0. Cross-cutting call topics
H2020-WF-03-2020
WF-03-2020 Widening Fellowships