Oligomers-MAS-NMR | Structure determination of amyloid oligomers, the pathogenic species in Alzheimer ́s disease using fast MAS NMR and microfluidics

Summary
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder responsible for about 2 million deaths per year. Despite tremendous progress in basic research within the last years, its efficient treatment and diagnostic tools are still lacking. The previous studies have gathered sufficient evidence of a causative role of the aggregates of two proteins - amyloid beta and tau - in the AD pathogenesis. Both of these proteins can form highly toxic oligomeric species, which are the primary suspects of AD-related neurotoxicity. However, due to experimental difficulties the detailed structural and functional characterization of the oligomeric forms has been a big challenge. In the proposed project we aim to build on cutting-edge technologies and novel approaches to obtain atomic-level structures and investigate interactions of the amyloid beta and tau oligomers. Thus, this multidisciplinary project will apply (I) cell-free protein expression and purification protocols for incorporation of various selectively 13C, 15N and 19F labeled amino-acids; (II) microfluidics in order to generate size-controlled oligomers (III) solid-state NMR (ssNMR) at fast magic-angle spinning (MAS) regime tailored for 1H and 19F detection schemes. The anticipated outcome of this will be a unique combination of approaches to study amyloid aggregates, which can be further used and adapted for studying other protein assemblies. The project results will form the basis of innovation in the treatment of AD as well as other tauopathies.
Results, demos, etc. Show all and search (2)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101038074
Start date: 01-12-2021
End date: 30-11-2023
Total budget - Public funding: 140 202,24 Euro - 140 202,00 Euro
Cordis data

Original description

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder responsible for about 2 million deaths per year. Despite tremendous progress in basic research within the last years, its efficient treatment and diagnostic tools are still lacking. The previous studies have gathered sufficient evidence of a causative role of the aggregates of two proteins - amyloid beta and tau - in the AD pathogenesis. Both of these proteins can form highly toxic oligomeric species, which are the primary suspects of AD-related neurotoxicity. However, due to experimental difficulties the detailed structural and functional characterization of the oligomeric forms has been a big challenge. In the proposed project we aim to build on cutting-edge technologies and novel approaches to obtain atomic-level structures and investigate interactions of the amyloid beta and tau oligomers. Thus, this multidisciplinary project will apply (I) cell-free protein expression and purification protocols for incorporation of various selectively 13C, 15N and 19F labeled amino-acids; (II) microfluidics in order to generate size-controlled oligomers (III) solid-state NMR (ssNMR) at fast magic-angle spinning (MAS) regime tailored for 1H and 19F detection schemes. The anticipated outcome of this will be a unique combination of approaches to study amyloid aggregates, which can be further used and adapted for studying other protein assemblies. The project results will form the basis of innovation in the treatment of AD as well as other tauopathies.

Status

CLOSED

Call topic

WF-03-2020

Update Date

17-05-2024
Images
No images available.
Geographical location(s)