MiSS | Microwave Squeezing with Superconducting (meta)materials

Summary
The MiSS project targets transformative progress in the emerging field of distributed quantum sensing exploiting multi-mode microwave squeezing. The final goal is to realise a robust and scalable technology for microwave squeezing and generation of non-classical microwave radiation based on superconducting (meta)materials. The three specific objectives of the MiSS project are: 1) Technological innovation, investigating new material and scalable microfabrication approaches to optimise the building blocks to produce Travelling Wave Parametric Amplifiers-based squeezers; 2) Metrology protocols, developing dedicated cryogenic measurement protocols to accurately evaluate the radiation quantumness, opening the way to standardisation; 3) Realisation of a prototype for real world applications, developing a system with scalability potential for distributed quantum sensing in the microwave regime. A use-case dedicated to multi-parameter sensing for material characterisation will be targeted. The outcomes of this project will pave the way towards real exploitation of quantum-enhanced sensing techniques in the microwave regime. The MiSS consortium brings together a unique set of expertise in design, materials, metrology, fabrication, cryogenic characterisation and commercialisation to be able to deliver on this ambitious goal.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101135868
Start date: 01-06-2024
End date: 31-05-2027
Total budget - Public funding: 2 582 102,50 Euro - 2 582 102,00 Euro
Cordis data

Original description

The MiSS project targets transformative progress in the emerging field of distributed quantum sensing exploiting multi-mode microwave squeezing. The final goal is to realise a robust and scalable technology for microwave squeezing and generation of non-classical microwave radiation based on superconducting (meta)materials. The three specific objectives of the MiSS project are: 1) Technological innovation, investigating new material and scalable microfabrication approaches to optimise the building blocks to produce Travelling Wave Parametric Amplifiers-based squeezers; 2) Metrology protocols, developing dedicated cryogenic measurement protocols to accurately evaluate the radiation quantumness, opening the way to standardisation; 3) Realisation of a prototype for real world applications, developing a system with scalability potential for distributed quantum sensing in the microwave regime. A use-case dedicated to multi-parameter sensing for material characterisation will be targeted. The outcomes of this project will pave the way towards real exploitation of quantum-enhanced sensing techniques in the microwave regime. The MiSS consortium brings together a unique set of expertise in design, materials, metrology, fabrication, cryogenic characterisation and commercialisation to be able to deliver on this ambitious goal.

Status

SIGNED

Call topic

HORIZON-CL4-2023-DIGITAL-EMERGING-01-50

Update Date

29-09-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.0 Cross-cutting call topics
HORIZON-CL4-2023-DIGITAL-EMERGING-01-CNECT
HORIZON-CL4-2023-DIGITAL-EMERGING-01-50 Next generation quantum sensing and metrology technologies (RIA)
HORIZON.2.4.7 Advanced Computing and Big Data
HORIZON-CL4-2023-DIGITAL-EMERGING-01-CNECT
HORIZON-CL4-2023-DIGITAL-EMERGING-01-50 Next generation quantum sensing and metrology technologies (RIA)