Summary
The renewable energy input in the grid is not sufficient to cover the European energy demand, which largely still depends on fossil fuels. To reach the goal of climate neutrality by 2050, Europe needs to diversify and improve the adoption of renewable energy technologies. A yet-untapped source of energy can be found in the ocean. While wave and tidal energy have been explored, the reliable and predictable vortex wake energy has not been harvested yet as a renewable energy source. UR4energy will tap into this energy source by developing an efficient way to harvest it by using Underwater Robots. In this project, Prof. Pettersen will prove the technical and commercial feasibility of an underwater robot for ocean energy harvesting. Prof. Pettersen’s group will integrate the expertise of two partners, i.e., Inventas AS and NTNU Technology Transfer AS, for the development of the prototype and the monitoring of the patent landscape, respectively. UR4energy contributes to the ocean energy market, one of the fastest growing renewable energy markets (CAGR 2022-2030 = 33.5%) with a versatile technology that has the potential to support the EU’s independence from fossil fuels, while contributing to research on robotics and autonomy for underwater robots.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101188523 |
Start date: | 01-09-2024 |
End date: | 28-02-2026 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
The renewable energy input in the grid is not sufficient to cover the European energy demand, which largely still depends on fossil fuels. To reach the goal of climate neutrality by 2050, Europe needs to diversify and improve the adoption of renewable energy technologies. A yet-untapped source of energy can be found in the ocean. While wave and tidal energy have been explored, the reliable and predictable vortex wake energy has not been harvested yet as a renewable energy source. UR4energy will tap into this energy source by developing an efficient way to harvest it by using Underwater Robots. In this project, Prof. Pettersen will prove the technical and commercial feasibility of an underwater robot for ocean energy harvesting. Prof. Pettersen’s group will integrate the expertise of two partners, i.e., Inventas AS and NTNU Technology Transfer AS, for the development of the prototype and the monitoring of the patent landscape, respectively. UR4energy contributes to the ocean energy market, one of the fastest growing renewable energy markets (CAGR 2022-2030 = 33.5%) with a versatile technology that has the potential to support the EU’s independence from fossil fuels, while contributing to research on robotics and autonomy for underwater robots.Status
SIGNEDCall topic
ERC-2024-POCUpdate Date
17-11-2024
Images
No images available.
Geographical location(s)