Summary
Carbenoids (carbene and nitrene) have revolutionized the field of organic chemistry, reshaping and improving the molecular construction landscape and unveiling previously inaccessible reaction pathways. This chemistry has massively simplified the synthesis of complex molecular structures, such as pharmaceuticals, agrochemicals, and polymers. In contrast with the essential role of carbenes and nitrenes, the boron analogue - borylene - has received limited attention in synthetic chemistry. A basic understanding of borylene reactivity has hindered its utilization in organic synthesis, primarily because of its synthetically challenging formation.
This proposal aims to harness electrochemistry as a novel synthetic approach for the controlled generation of borylenes. This chemoselective platform will determine the critical factors that influence the reactivity of borylene intermediates and will enable the use of new borylation techniques previously out of reach of chemists. Having successfully demonstrated the first example of electrochemical borylene formation, we anticipate the emergence of various novel borylation techniques, among others, (i) the synthesis of underexplored strained three-membered boracycles by cycloaddition reactivity, unlocking access to novel classes of molecules, and (ii) the activation of ubiquitous bonds through boron insertion into C-C, which will utilize unprecedented retrosynthetic logic for ring expansion and 1,n-substituted chemical motifs, thus shortening the synthetic scheme of functional materials.
Drawing inspiration from the remarkable impact of carbenoids across a multitude of chemistry domains, we envision that the electrosynthesis of borylenes will empower chemists to employ these reactive species to unlock access to entirely underexplored classes of molecules and will provide profound insights into borylene reactivity, consequently charting a captivating course towards undiscovered realms in chemical synthesis.
This proposal aims to harness electrochemistry as a novel synthetic approach for the controlled generation of borylenes. This chemoselective platform will determine the critical factors that influence the reactivity of borylene intermediates and will enable the use of new borylation techniques previously out of reach of chemists. Having successfully demonstrated the first example of electrochemical borylene formation, we anticipate the emergence of various novel borylation techniques, among others, (i) the synthesis of underexplored strained three-membered boracycles by cycloaddition reactivity, unlocking access to novel classes of molecules, and (ii) the activation of ubiquitous bonds through boron insertion into C-C, which will utilize unprecedented retrosynthetic logic for ring expansion and 1,n-substituted chemical motifs, thus shortening the synthetic scheme of functional materials.
Drawing inspiration from the remarkable impact of carbenoids across a multitude of chemistry domains, we envision that the electrosynthesis of borylenes will empower chemists to employ these reactive species to unlock access to entirely underexplored classes of molecules and will provide profound insights into borylene reactivity, consequently charting a captivating course towards undiscovered realms in chemical synthesis.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101163979 |
Start date: | 01-10-2024 |
End date: | 30-09-2029 |
Total budget - Public funding: | 1 499 643,00 Euro - 1 499 643,00 Euro |
Cordis data
Original description
Carbenoids (carbene and nitrene) have revolutionized the field of organic chemistry, reshaping and improving the molecular construction landscape and unveiling previously inaccessible reaction pathways. This chemistry has massively simplified the synthesis of complex molecular structures, such as pharmaceuticals, agrochemicals, and polymers. In contrast with the essential role of carbenes and nitrenes, the boron analogue - borylene - has received limited attention in synthetic chemistry. A basic understanding of borylene reactivity has hindered its utilization in organic synthesis, primarily because of its synthetically challenging formation.This proposal aims to harness electrochemistry as a novel synthetic approach for the controlled generation of borylenes. This chemoselective platform will determine the critical factors that influence the reactivity of borylene intermediates and will enable the use of new borylation techniques previously out of reach of chemists. Having successfully demonstrated the first example of electrochemical borylene formation, we anticipate the emergence of various novel borylation techniques, among others, (i) the synthesis of underexplored strained three-membered boracycles by cycloaddition reactivity, unlocking access to novel classes of molecules, and (ii) the activation of ubiquitous bonds through boron insertion into C-C, which will utilize unprecedented retrosynthetic logic for ring expansion and 1,n-substituted chemical motifs, thus shortening the synthetic scheme of functional materials.
Drawing inspiration from the remarkable impact of carbenoids across a multitude of chemistry domains, we envision that the electrosynthesis of borylenes will empower chemists to employ these reactive species to unlock access to entirely underexplored classes of molecules and will provide profound insights into borylene reactivity, consequently charting a captivating course towards undiscovered realms in chemical synthesis.
Status
SIGNEDCall topic
ERC-2024-STGUpdate Date
17-11-2024
Images
No images available.
Geographical location(s)