A-STEAM | Aluminum STEAM combustion for clean energy

Summary
Metal fuels are emerging as a zero-carbon, high-energy density replacement for fossil fuels due to their availability and recyclability using renewable energy. Aluminum (Al) powder has been investigated mostly in air/O2 as an additive in solid rocket engines. Recently, Al continuous pressurized combustion in steam has attracted considerable interest for on-demand co-production of high-temperature heat and H2. Combustion in pressurized steam lowers flame temperatures and minimizes emissions of undesirable and hard-to-collect Al2O3 nanoparticles. Quantitative understanding of the dynamics of multi-phase and multi-scale Al-steam flames, driven by microscopic transport processes, phase changes, as well as homogeneous and heterogeneous chemical reactions at the particle level, is largely lacking. A-STEAM will unravel the fundamental properties of pressurized Al-steam flames for the entire scientific chain, from single particles to turbulent flames with millions of particles, through a well-orchestrated combination of high-fidelity simulations, advanced modeling, and tailored experiments. We will combine and develop our unique computational capabilities in fully resolved direct numerical simulations (FR-DNS) at the particle level, novel particle-in-cell (PIC) models considering particle-attached/particle-detached flames and Al2O3 nanoparticle formation, carrier-phase DNS (CP-DNS), and large eddy simulations (LES) of turbulent confined flames. The unique combination of numerical studies and tailored experiments will lead to a substantial breakthrough in knowledge by quantifying physicochemical processes in Al-steam combustion, bridging the gap between single particles and turbulent flames. Our numerical-experimental database of reference Al-steam flames, together with science-based best practice guidelines for future Al burners, will also empower the broader metal fuel research community and guide future system design and implementation of this carbon-free technology.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101141234
Start date: 01-10-2024
End date: 30-09-2029
Total budget - Public funding: 2 498 481,00 Euro - 2 498 481,00 Euro
Cordis data

Original description

Metal fuels are emerging as a zero-carbon, high-energy density replacement for fossil fuels due to their availability and recyclability using renewable energy. Aluminum (Al) powder has been investigated mostly in air/O2 as an additive in solid rocket engines. Recently, Al continuous pressurized combustion in steam has attracted considerable interest for on-demand co-production of high-temperature heat and H2. Combustion in pressurized steam lowers flame temperatures and minimizes emissions of undesirable and hard-to-collect Al2O3 nanoparticles. Quantitative understanding of the dynamics of multi-phase and multi-scale Al-steam flames, driven by microscopic transport processes, phase changes, as well as homogeneous and heterogeneous chemical reactions at the particle level, is largely lacking. A-STEAM will unravel the fundamental properties of pressurized Al-steam flames for the entire scientific chain, from single particles to turbulent flames with millions of particles, through a well-orchestrated combination of high-fidelity simulations, advanced modeling, and tailored experiments. We will combine and develop our unique computational capabilities in fully resolved direct numerical simulations (FR-DNS) at the particle level, novel particle-in-cell (PIC) models considering particle-attached/particle-detached flames and Al2O3 nanoparticle formation, carrier-phase DNS (CP-DNS), and large eddy simulations (LES) of turbulent confined flames. The unique combination of numerical studies and tailored experiments will lead to a substantial breakthrough in knowledge by quantifying physicochemical processes in Al-steam combustion, bridging the gap between single particles and turbulent flames. Our numerical-experimental database of reference Al-steam flames, together with science-based best practice guidelines for future Al burners, will also empower the broader metal fuel research community and guide future system design and implementation of this carbon-free technology.

Status

SIGNED

Call topic

ERC-2023-ADG

Update Date

22-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.1 Frontier science
ERC-2023-ADG ERC ADVANCED GRANTS