Summary
Neurological disorders have emerged as a significant global societal burden, exemplified by afflictions like Alzheimer's and Parkinson's, impacting over one billion individuals globally and surpassing the combined economic burden of cancer and diabetes. This has spurred a concerted global effort, with increased support for neuroscience research. These disorders often target deep brain regions and profoundly influence the structural connectivity of neuronal cells within functional circuits. Synapses, where neurons exchange information, exhibit plasticity, altering information transmission efficiency, shape, and position. Understanding the mechanisms underlying these structural changes, especially in neuronal circuits, remains limited in both healthy and affected individuals. The ERC PoC project STEDGate seeks to advance our understanding of neuronal connectivity and plasticity by developing STED-enabled holographic endo-nanoscopy for neuroscience. This ground-breaking technology promises atraumatic nanoscale in-vivo imaging of deep brain structures reaching depths up to 5 mm beneath the brain's surface. Collaborating with the start-up endeavour DeepEn, the team aims to facilitate the commercial transition of this technology. Making deep-tisue nanoscopy available globally will revolutionize our ability to monitor and understand neurological disorders and, ultimately, offer new avenues for intervention and treatment..
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101158010 |
Start date: | 01-05-2024 |
End date: | 31-10-2025 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
Neurological disorders have emerged as a significant global societal burden, exemplified by afflictions like Alzheimer's and Parkinson's, impacting over one billion individuals globally and surpassing the combined economic burden of cancer and diabetes. This has spurred a concerted global effort, with increased support for neuroscience research. These disorders often target deep brain regions and profoundly influence the structural connectivity of neuronal cells within functional circuits. Synapses, where neurons exchange information, exhibit plasticity, altering information transmission efficiency, shape, and position. Understanding the mechanisms underlying these structural changes, especially in neuronal circuits, remains limited in both healthy and affected individuals. The ERC PoC project STEDGate seeks to advance our understanding of neuronal connectivity and plasticity by developing STED-enabled holographic endo-nanoscopy for neuroscience. This ground-breaking technology promises atraumatic nanoscale in-vivo imaging of deep brain structures reaching depths up to 5 mm beneath the brain's surface. Collaborating with the start-up endeavour DeepEn, the team aims to facilitate the commercial transition of this technology. Making deep-tisue nanoscopy available globally will revolutionize our ability to monitor and understand neurological disorders and, ultimately, offer new avenues for intervention and treatment..Status
SIGNEDCall topic
ERC-2023-POCUpdate Date
22-11-2024
Images
No images available.
Geographical location(s)