Summary
Pain results from activation of the nociceptive sensory system, which is built upon the primary afferent nociceptor a type of sensory neuron specialized to detect, code and relay information about potentially or actually damaging stimuli. Humans lacking properly functioning nociceptors never experience pain and have reduced life expectancy and suffer severe disability. Nociceptors detect sustained force into ranges that are potentially damaging and sustained nociceptor activation will always lead to pain. It has been assumed that mechanical force transduced by nociceptors requires mechanically activated ion channels in the nociceptor membrane. However, recent data suggests that sensory Schwann cells that wrap the nociceptor ending also participate in force transduction. The aim of this proposal is to identify molecules specifically involved in nociceptor force transduction at this neuroglial site. We have already identified an ion channel (Tmem87a/ELKIN1) and an extracellular tether protein (TENM4) as being involved in nociceptor force transduction. In addition, STOML3 modulates ELKIN1 function and can sensitize almost all nociceptors to mechanical force. The identification of a set of molecules involved in force transduction (ELKIN1/TENM4/STOML3) will allow us to design “guilt by association” approaches to identify new players. We will use ultra-low input spatial proteomics, BioID and high throughput electrophysiological screening to achieve this aim. We have designed novel genetic strategies to interrogate the function of candidate proteins in nociceptor force transduction with timescales ranging from weeks to minutes. This ambitious and challenging project promises to deliver novel molecular targets that can be used to specifically target nociceptor force transduction. Specific targeting of nociceptor force transduction could be a powerful new way to treat multiple pain types poorly served by existing therapies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101142488 |
Start date: | 01-07-2024 |
End date: | 30-06-2029 |
Total budget - Public funding: | 2 500 000,00 Euro - 2 500 000,00 Euro |
Cordis data
Original description
Pain results from activation of the nociceptive sensory system, which is built upon the primary afferent nociceptor a type of sensory neuron specialized to detect, code and relay information about potentially or actually damaging stimuli. Humans lacking properly functioning nociceptors never experience pain and have reduced life expectancy and suffer severe disability. Nociceptors detect sustained force into ranges that are potentially damaging and sustained nociceptor activation will always lead to pain. It has been assumed that mechanical force transduced by nociceptors requires mechanically activated ion channels in the nociceptor membrane. However, recent data suggests that sensory Schwann cells that wrap the nociceptor ending also participate in force transduction. The aim of this proposal is to identify molecules specifically involved in nociceptor force transduction at this neuroglial site. We have already identified an ion channel (Tmem87a/ELKIN1) and an extracellular tether protein (TENM4) as being involved in nociceptor force transduction. In addition, STOML3 modulates ELKIN1 function and can sensitize almost all nociceptors to mechanical force. The identification of a set of molecules involved in force transduction (ELKIN1/TENM4/STOML3) will allow us to design “guilt by association” approaches to identify new players. We will use ultra-low input spatial proteomics, BioID and high throughput electrophysiological screening to achieve this aim. We have designed novel genetic strategies to interrogate the function of candidate proteins in nociceptor force transduction with timescales ranging from weeks to minutes. This ambitious and challenging project promises to deliver novel molecular targets that can be used to specifically target nociceptor force transduction. Specific targeting of nociceptor force transduction could be a powerful new way to treat multiple pain types poorly served by existing therapies.Status
SIGNEDCall topic
ERC-2023-ADGUpdate Date
15-11-2024
Images
No images available.
Geographical location(s)