Summary
Enzymes exhibit high efficiency, specificity, selectivity, biodegradability, non-toxicity, and the ability to function effectively under gentle biological conditions. These qualities render enzymes a sustainable and eco-friendly substitute for traditional catalysts within industrial settings. However, harnessing enzymes for industrial applications often necessitates extensive and costly experimental engineering efforts. Computational methods hold promise as potential solutions, but these have not yet demonstrated the ability to rapidly design highly efficient enzymes that mimic those found in Nature. As opposed to other methods, our computational approach developed in the previous ERC-STG can introduce active site and distal mutations that modulate the enzyme conformational dynamics, achieving increases in catalytic efficiency of up to 1000-fold. This project aims to exploit the proprietary technology developed in ERC-STG and ERC-POC for generating a set of patentable rationally designed enzyme kits focused on stereoselective carbon-carbon bond formation. KITZYME aims to create a spin-off for the exploitation of the new set of rationally designed enzyme kits as well as the proprietary technology developed for enzyme optimization. Both the enzyme kits and our technology are the cornerstone of the project, and will provide industries with a cost-effective, scalable, and environmentally sustainable solution.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101158166 |
Start date: | 01-07-2024 |
End date: | 31-12-2025 |
Total budget - Public funding: | - 150 000,00 Euro |
Cordis data
Original description
Enzymes exhibit high efficiency, specificity, selectivity, biodegradability, non-toxicity, and the ability to function effectively under gentle biological conditions. These qualities render enzymes a sustainable and eco-friendly substitute for traditional catalysts within industrial settings. However, harnessing enzymes for industrial applications often necessitates extensive and costly experimental engineering efforts. Computational methods hold promise as potential solutions, but these have not yet demonstrated the ability to rapidly design highly efficient enzymes that mimic those found in Nature. As opposed to other methods, our computational approach developed in the previous ERC-STG can introduce active site and distal mutations that modulate the enzyme conformational dynamics, achieving increases in catalytic efficiency of up to 1000-fold. This project aims to exploit the proprietary technology developed in ERC-STG and ERC-POC for generating a set of patentable rationally designed enzyme kits focused on stereoselective carbon-carbon bond formation. KITZYME aims to create a spin-off for the exploitation of the new set of rationally designed enzyme kits as well as the proprietary technology developed for enzyme optimization. Both the enzyme kits and our technology are the cornerstone of the project, and will provide industries with a cost-effective, scalable, and environmentally sustainable solution.Status
SIGNEDCall topic
ERC-2023-POCUpdate Date
24-11-2024
Images
No images available.
Geographical location(s)