Summary
The spin angular momentum (S) of the electron has significantly extended conventional electronics, which relies on the electron charge (C), by new, so-called spintronic functionalities. Examples include magnetization switching, the transport of S and its detection, even down to femtosecond time scales. To boost the efficiency of spintronics, the so far neglected yet equally fascinating and important orbital angular momentum (L) of electrons is considered to be a powerful pathway. Orbitronic phenomena such as L-based transport, torques and magneto-optic effects have much larger magnitude than their S counterparts and may, thus, efficiently complement or even replace spintronic functionalities. Microscopically, L is completely different from S. Its dynamics involves new physics that needs to be understood, in particular on ultrafast time scales.
In the ORBITERA project, my team and I will obtain unprecedented insights into L dynamics by using femtosecond optical pulses and terahertz (THz) electric fields, which couple directly to the motion of conduction electrons at their natural frequencies and relaxation rates. We will tackle important challenges of general orbitronics and, in particular, separate L- and S-based effects despite their identical macroscopic symmetry properties, build ultrafast generators and detectors of exclusively L currents, reveal the nature of L transport (e.g., ballistic, diffusive, tunneling), measure the magnetic moments forming an L current, probe the interaction of L with the crystal lattice, temporally resolve L-S and L-C interconversion, and apply THz L torque to ultimately switch magnetic order ultrafast.
By establishing THz orbitronics, new methodology (such as ultrafast drivers of L currents and L-conductance spectroscopy at 0.1-50 THz) and applications (such as the detection of THz electric fields without relying on the weak spin-orbit coupling) will be developed that can be used by a community beyond specialized THz labs.
In the ORBITERA project, my team and I will obtain unprecedented insights into L dynamics by using femtosecond optical pulses and terahertz (THz) electric fields, which couple directly to the motion of conduction electrons at their natural frequencies and relaxation rates. We will tackle important challenges of general orbitronics and, in particular, separate L- and S-based effects despite their identical macroscopic symmetry properties, build ultrafast generators and detectors of exclusively L currents, reveal the nature of L transport (e.g., ballistic, diffusive, tunneling), measure the magnetic moments forming an L current, probe the interaction of L with the crystal lattice, temporally resolve L-S and L-C interconversion, and apply THz L torque to ultimately switch magnetic order ultrafast.
By establishing THz orbitronics, new methodology (such as ultrafast drivers of L currents and L-conductance spectroscopy at 0.1-50 THz) and applications (such as the detection of THz electric fields without relying on the weak spin-orbit coupling) will be developed that can be used by a community beyond specialized THz labs.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101142285 |
Start date: | 01-01-2025 |
End date: | 31-12-2029 |
Total budget - Public funding: | 2 494 296,00 Euro - 2 494 296,00 Euro |
Cordis data
Original description
The spin angular momentum (S) of the electron has significantly extended conventional electronics, which relies on the electron charge (C), by new, so-called spintronic functionalities. Examples include magnetization switching, the transport of S and its detection, even down to femtosecond time scales. To boost the efficiency of spintronics, the so far neglected yet equally fascinating and important orbital angular momentum (L) of electrons is considered to be a powerful pathway. Orbitronic phenomena such as L-based transport, torques and magneto-optic effects have much larger magnitude than their S counterparts and may, thus, efficiently complement or even replace spintronic functionalities. Microscopically, L is completely different from S. Its dynamics involves new physics that needs to be understood, in particular on ultrafast time scales.In the ORBITERA project, my team and I will obtain unprecedented insights into L dynamics by using femtosecond optical pulses and terahertz (THz) electric fields, which couple directly to the motion of conduction electrons at their natural frequencies and relaxation rates. We will tackle important challenges of general orbitronics and, in particular, separate L- and S-based effects despite their identical macroscopic symmetry properties, build ultrafast generators and detectors of exclusively L currents, reveal the nature of L transport (e.g., ballistic, diffusive, tunneling), measure the magnetic moments forming an L current, probe the interaction of L with the crystal lattice, temporally resolve L-S and L-C interconversion, and apply THz L torque to ultimately switch magnetic order ultrafast.
By establishing THz orbitronics, new methodology (such as ultrafast drivers of L currents and L-conductance spectroscopy at 0.1-50 THz) and applications (such as the detection of THz electric fields without relying on the weak spin-orbit coupling) will be developed that can be used by a community beyond specialized THz labs.
Status
SIGNEDCall topic
ERC-2023-ADGUpdate Date
22-11-2024
Images
No images available.
Geographical location(s)