CYNIPS | Cyclic nucleotides as second messengers in plants

Summary
Multicellularity in plants and animals arose independently, as reflected in dramatically different signalling mechanism make-ups. Intracellular signalling’s central paradigm in animals is the concept of ‘second messengers’- most prominently cAMP and cGMP. Contrastingly, in plants, cAMP/cGMP are not part of mainstream ideas on signalling.
Our recent, unexpected identification of cAMP and cGMP acting in the canonical signalling for the phytohormone auxin inspired a paradigm-shifting hypothesis that cAMP and cGMP act as largely unappreciated versatile second messengers in multiple plant signalling pathways. This would dramatically expand the modes of plant intracellular signalling, opening possibilities for additional regulations and crosstalks. It would also provide a new means of targeted engineering of signalling outputs, highly relevant for plant biotechnology.
To systematically explore this radical hypothesis, I propose to generate (opto)genetic tools to (i) monitor and (ii) specifically manipulate cellular cAMP/GMP levels. Our vRootchip microfluidics set-up allows us to (iii) survey the plant signalling landscape and identify pathways involving cAMP/GMP further supported by (iv) identification of thus-far elusive cAMP/cGMP targets. As a blueprint for the use of the generated tools and knowledge, we plan (v) to elucidate the role of cGMP in phytohormone jasmonate signalling. Together, these approaches will establish cAMP/cGMP as bona fide second messengers in plants. We provide a rich resource to investigate their involvement in any chosen signalling mechanism or cellular response, while offering tools to manipulate their signalling output for both fundamental discoveries and targeted applications.
This strategy poses considerable intellectual and methodological challenges, but our robust initial results, including functionality of cAMP/cGMP sensors, show a conceptual breakthrough is feasible, dramatically expanding our current view on plant signalling and beyond.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101142681
Start date: 01-06-2024
End date: 31-05-2029
Total budget - Public funding: 2 499 706,00 Euro - 2 499 706,00 Euro
Cordis data

Original description

Multicellularity in plants and animals arose independently, as reflected in dramatically different signalling mechanism make-ups. Intracellular signalling’s central paradigm in animals is the concept of ‘second messengers’- most prominently cAMP and cGMP. Contrastingly, in plants, cAMP/cGMP are not part of mainstream ideas on signalling.
Our recent, unexpected identification of cAMP and cGMP acting in the canonical signalling for the phytohormone auxin inspired a paradigm-shifting hypothesis that cAMP and cGMP act as largely unappreciated versatile second messengers in multiple plant signalling pathways. This would dramatically expand the modes of plant intracellular signalling, opening possibilities for additional regulations and crosstalks. It would also provide a new means of targeted engineering of signalling outputs, highly relevant for plant biotechnology.
To systematically explore this radical hypothesis, I propose to generate (opto)genetic tools to (i) monitor and (ii) specifically manipulate cellular cAMP/GMP levels. Our vRootchip microfluidics set-up allows us to (iii) survey the plant signalling landscape and identify pathways involving cAMP/GMP further supported by (iv) identification of thus-far elusive cAMP/cGMP targets. As a blueprint for the use of the generated tools and knowledge, we plan (v) to elucidate the role of cGMP in phytohormone jasmonate signalling. Together, these approaches will establish cAMP/cGMP as bona fide second messengers in plants. We provide a rich resource to investigate their involvement in any chosen signalling mechanism or cellular response, while offering tools to manipulate their signalling output for both fundamental discoveries and targeted applications.
This strategy poses considerable intellectual and methodological challenges, but our robust initial results, including functionality of cAMP/cGMP sensors, show a conceptual breakthrough is feasible, dramatically expanding our current view on plant signalling and beyond.

Status

SIGNED

Call topic

ERC-2023-ADG

Update Date

22-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.1 Frontier science
ERC-2023-ADG ERC ADVANCED GRANTS