Summary
Shortages in amino acids are weapons in the warfare between tumor cells and tumor-infiltrating lymphocytes. Tumor cells enhance or inhibit the production of key amino acid metabolites to stimulate oncogenesis and suppress anti-tumor activity. A key player in this battle is tryptophan. Activated T cells secrete interferon-γ, which upregulates IDO1 enzyme to catabolize tryptophan to kynurenine in target tumor cells. While kynurenine suppresses T-cell function, its production limits tryptophan availability in tumor cells. Importantly, as tumor cells almost invariably deregulate mRNA translation to promote proliferation and metastasis, the consequences of tryptophan shortage are major. It provokes aberrant mRNA translation at tryptophan codons, resulting in ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments (substitutants). This aberrant mRNA translation alters protein function and enriches the landscape of neoepitopes at the surface of tumor cells. Based on these observations, I hypothesize here that the detection of aberrant proteins in cancer specimens can reveal additional key processes of cancer progression beyond tryptophan that can be utilized for cancer therapy.
To explore this exciting new idea, I designed three work packages (WPs):
WP1 will expand the landscape of aberrant mRNA translation in cancer and link them to cancerous events. Preliminary results pinpoint arginine, histidine, and leucine.
WP2 will generate reporter assays, set up functional genetic screens, and identify, validate, and explore key regulators of aberrant mRNA translation.
WP3 will study the functional consequences of aberrant mRNA translation, and introduce novel therapeutic concepts.
Altogether, this proposal will employ our recent discoveries of aberrant mRNA translation during periods of amino acid shortages to explore novel interplays between cancers and their suppressive microenvironment, and utilize this new knowledge for cancer therapy.
To explore this exciting new idea, I designed three work packages (WPs):
WP1 will expand the landscape of aberrant mRNA translation in cancer and link them to cancerous events. Preliminary results pinpoint arginine, histidine, and leucine.
WP2 will generate reporter assays, set up functional genetic screens, and identify, validate, and explore key regulators of aberrant mRNA translation.
WP3 will study the functional consequences of aberrant mRNA translation, and introduce novel therapeutic concepts.
Altogether, this proposal will employ our recent discoveries of aberrant mRNA translation during periods of amino acid shortages to explore novel interplays between cancers and their suppressive microenvironment, and utilize this new knowledge for cancer therapy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101141245 |
Start date: | 01-09-2024 |
End date: | 31-08-2029 |
Total budget - Public funding: | 2 500 000,00 Euro - 2 500 000,00 Euro |
Cordis data
Original description
Shortages in amino acids are weapons in the warfare between tumor cells and tumor-infiltrating lymphocytes. Tumor cells enhance or inhibit the production of key amino acid metabolites to stimulate oncogenesis and suppress anti-tumor activity. A key player in this battle is tryptophan. Activated T cells secrete interferon-γ, which upregulates IDO1 enzyme to catabolize tryptophan to kynurenine in target tumor cells. While kynurenine suppresses T-cell function, its production limits tryptophan availability in tumor cells. Importantly, as tumor cells almost invariably deregulate mRNA translation to promote proliferation and metastasis, the consequences of tryptophan shortage are major. It provokes aberrant mRNA translation at tryptophan codons, resulting in ribosomal frameshifting and tryptophan to phenylalanine (W>F) codon reassignments (substitutants). This aberrant mRNA translation alters protein function and enriches the landscape of neoepitopes at the surface of tumor cells. Based on these observations, I hypothesize here that the detection of aberrant proteins in cancer specimens can reveal additional key processes of cancer progression beyond tryptophan that can be utilized for cancer therapy.To explore this exciting new idea, I designed three work packages (WPs):
WP1 will expand the landscape of aberrant mRNA translation in cancer and link them to cancerous events. Preliminary results pinpoint arginine, histidine, and leucine.
WP2 will generate reporter assays, set up functional genetic screens, and identify, validate, and explore key regulators of aberrant mRNA translation.
WP3 will study the functional consequences of aberrant mRNA translation, and introduce novel therapeutic concepts.
Altogether, this proposal will employ our recent discoveries of aberrant mRNA translation during periods of amino acid shortages to explore novel interplays between cancers and their suppressive microenvironment, and utilize this new knowledge for cancer therapy.
Status
SIGNEDCall topic
ERC-2023-ADGUpdate Date
26-11-2024
Images
No images available.
Geographical location(s)