EngVIPO | Engineering Vascularized Implants for Personalised Osteochondral Tissue Regeneration: From medical imaging to pre-clinical validation

Summary
Osteochondral Injuries (OCI) is a challenging yet common clinical problem for orthopaedic surgeons worldwide and is associated with multiple clinical scenarios ranging from trauma to osteonecrosis. Strategies for functional tissue regeneration at still far from the clinics and should endeavour to heal the subchondral bone and joint interface and hyaline cartilage. Enhancing the understanding of the mechanisms that underlie OCI holds the potential to unlock ground-breaking advancements in therapeutic interventions. EngVIPO tackles current challenges in the realm of biofabricated patient-specific implants with enhanced vascularity and functionality, concerning scientific expertise and collaborations with renowned institutions for OC tissue engineering, within the interdisciplinary domains of 3D computational modelling, advanced manufacturing, 3D in vitro models, and nanotechnology, and boosting clinical translation of the tissue engineered products. The project is focused on catapult knowledge exchange and create research synergies on the development of innovative biomaterials and bioinks, emerging technologies, biobanks and personalized medicine, for the complete regeneration and establishment of normal function of injured/diseased OC tissue. This will range from advanced biomaterials/scaffolds incorporating bioactive ions with osteogenic function, implementation of innovative manufacturing technologies, spheroids/organoids integrated into microfluidics, therapeutic biologicals and biobanks, in silico modelling, in vitro immunocompatiblity, to in vivo evaluation. Such innovative approach represents a significant advancement in the field of orthopedics, leading to improved participation of biobanks towards the development of advanced implants and patient outcomes, and setting new standards for personalized implant solutions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101183041
Start date: 01-10-2024
End date: 30-09-2028
Total budget - Public funding: - 1 311 000,00 Euro
Cordis data

Original description

Osteochondral Injuries (OCI) is a challenging yet common clinical problem for orthopaedic surgeons worldwide and is associated with multiple clinical scenarios ranging from trauma to osteonecrosis. Strategies for functional tissue regeneration at still far from the clinics and should endeavour to heal the subchondral bone and joint interface and hyaline cartilage. Enhancing the understanding of the mechanisms that underlie OCI holds the potential to unlock ground-breaking advancements in therapeutic interventions. EngVIPO tackles current challenges in the realm of biofabricated patient-specific implants with enhanced vascularity and functionality, concerning scientific expertise and collaborations with renowned institutions for OC tissue engineering, within the interdisciplinary domains of 3D computational modelling, advanced manufacturing, 3D in vitro models, and nanotechnology, and boosting clinical translation of the tissue engineered products. The project is focused on catapult knowledge exchange and create research synergies on the development of innovative biomaterials and bioinks, emerging technologies, biobanks and personalized medicine, for the complete regeneration and establishment of normal function of injured/diseased OC tissue. This will range from advanced biomaterials/scaffolds incorporating bioactive ions with osteogenic function, implementation of innovative manufacturing technologies, spheroids/organoids integrated into microfluidics, therapeutic biologicals and biobanks, in silico modelling, in vitro immunocompatiblity, to in vivo evaluation. Such innovative approach represents a significant advancement in the field of orthopedics, leading to improved participation of biobanks towards the development of advanced implants and patient outcomes, and setting new standards for personalized implant solutions.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-SE-01-01

Update Date

19-09-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-SE-01
HORIZON-MSCA-2023-SE-01-01 MSCA Staff Exchanges 2023