SPLiDAR | Stable Polariton LiDAR

Summary
In the realm of advanced optical systems, particularly within the emerging field of Light Detection and Ranging (LiDAR) technology, which are pivotal for 3D sensing applications across various sectors, a significant commercial challenge emerges from the inherent limitations posed by optical interference in thin-film filters. The core of this challenge lies in the phenomenon known as 'angular dispersion,' a fundamental constraint of interference-based structures in thin-film filter design. Angular dispersion refers to the shift in transmission wavelength of optical filters as the angle of incidence changes, typically resulting in a pronounced blue-shift. This effect, while intrinsic to the operation of optical interference, undermines the performance of LiDAR systems by requiring the filters to have sufficiently broad pass bands to accommodate the angular shift. The SPLiDAR initiative is set to revolutionize the landscape of photonic applications by introducing a groundbreaking approach that transcends the traditional constraints of angular dispersion. This approach harnesses the quantum optical phenomenon of merging light and matter states to create angle-independent transmissive filters, referred to as polariton filters here. This project is poised to redefine of optical filtering and sensing by introducing a novel class of spectrally sharp and angle-independent transmission filters, thereby overcoming the fundamental limitations of angular dispersion in conventional optical devices. The SPLiDAR project will leverage the team's profound expertise in thin-film optics, including transfer matrix and FDTD calculations and structure design optimization, along with a deep understanding of organic absorber properties and a wealth of experience in optoelectronics.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101188883
Start date: 01-01-2025
End date: 30-06-2026
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

In the realm of advanced optical systems, particularly within the emerging field of Light Detection and Ranging (LiDAR) technology, which are pivotal for 3D sensing applications across various sectors, a significant commercial challenge emerges from the inherent limitations posed by optical interference in thin-film filters. The core of this challenge lies in the phenomenon known as 'angular dispersion,' a fundamental constraint of interference-based structures in thin-film filter design. Angular dispersion refers to the shift in transmission wavelength of optical filters as the angle of incidence changes, typically resulting in a pronounced blue-shift. This effect, while intrinsic to the operation of optical interference, undermines the performance of LiDAR systems by requiring the filters to have sufficiently broad pass bands to accommodate the angular shift. The SPLiDAR initiative is set to revolutionize the landscape of photonic applications by introducing a groundbreaking approach that transcends the traditional constraints of angular dispersion. This approach harnesses the quantum optical phenomenon of merging light and matter states to create angle-independent transmissive filters, referred to as polariton filters here. This project is poised to redefine of optical filtering and sensing by introducing a novel class of spectrally sharp and angle-independent transmission filters, thereby overcoming the fundamental limitations of angular dispersion in conventional optical devices. The SPLiDAR project will leverage the team's profound expertise in thin-film optics, including transfer matrix and FDTD calculations and structure design optimization, along with a deep understanding of organic absorber properties and a wealth of experience in optoelectronics.

Status

SIGNED

Call topic

ERC-2024-POC

Update Date

29-09-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.1 European Research Council (ERC)
HORIZON.1.1.1 Frontier science
ERC-2024-POC ERC PROOF OF CONCEPT GRANTS