BLASTEX | Blast Resistant Self-Centering Textile Reinforced Concrete Strengthening

Summary
BLASTEX aims to jumpstart the development of self-centering (SC) reinforced concrete members that absorb blast energy with minimal damage, utilizing textile-reinforced concrete (TRC) strengthening layers for swift functional recovery. TRC layers dissipate energy through controlled crack formation in the cementitious matrix, while elastic textile reinforcement acts as a restorative spring, returning the structure to its original position after blast inertial loads are removed. While SC principles are well-established in seismic-resistant steel structures, their application in blast-resilient reinforced concrete remains unexplored. BLASTEX bridges this gap, leveraging SC to enhance blast resilience, eliminate the need for demolition, and reduce waste generation and associated emissions in new construction.
During the outgoing phase at Virginia Tech (VT, US, 2 yr.), I will perform blast tests using the unique Shock Tube Laboratory, validate numerical models, and optimize SC design parameters. At Czech Technical University in Prague (CTU, CZ, incoming phase, 1 yr.), I will conduct numerical parametric studies and develop guidelines to facilitate SC implementation. At MOB-Bars (CZ, non-academic placement, 6 mo.), a start-up specializing in blast-resistant systems, I will examine SC protective design deployment in the commercial sector.
With MSCA funding, I will benefit from three forms of mentorship: (i) close collaboration with Dr. Eric Jacques, a Shock Tube Laboratory director and expert on infrastructure resilience, blast protection, and energetic materials, (ii) academic leadership/research facility management training (Prof. Petr Konvalinka, former CTU Rector), and (iii) collaboration with Dr. Jindřich Fornůsek (MOB-Bars CEO).
BLASTEX will facilitate two-way knowledge transfer across the Atlantic, enabling the researcher to find a future tenure-track position while honing his leadership/fundraising skills in blast research and the design of experimental facilities.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101147514
Start date: 01-09-2025
End date: 28-02-2029
Total budget - Public funding: - 319 273,00 Euro
Cordis data

Original description

BLASTEX aims to jumpstart the development of self-centering (SC) reinforced concrete members that absorb blast energy with minimal damage, utilizing textile-reinforced concrete (TRC) strengthening layers for swift functional recovery. TRC layers dissipate energy through controlled crack formation in the cementitious matrix, while elastic textile reinforcement acts as a restorative spring, returning the structure to its original position after blast inertial loads are removed. While SC principles are well-established in seismic-resistant steel structures, their application in blast-resilient reinforced concrete remains unexplored. BLASTEX bridges this gap, leveraging SC to enhance blast resilience, eliminate the need for demolition, and reduce waste generation and associated emissions in new construction.
During the outgoing phase at Virginia Tech (VT, US, 2 yr.), I will perform blast tests using the unique Shock Tube Laboratory, validate numerical models, and optimize SC design parameters. At Czech Technical University in Prague (CTU, CZ, incoming phase, 1 yr.), I will conduct numerical parametric studies and develop guidelines to facilitate SC implementation. At MOB-Bars (CZ, non-academic placement, 6 mo.), a start-up specializing in blast-resistant systems, I will examine SC protective design deployment in the commercial sector.
With MSCA funding, I will benefit from three forms of mentorship: (i) close collaboration with Dr. Eric Jacques, a Shock Tube Laboratory director and expert on infrastructure resilience, blast protection, and energetic materials, (ii) academic leadership/research facility management training (Prof. Petr Konvalinka, former CTU Rector), and (iii) collaboration with Dr. Jindřich Fornůsek (MOB-Bars CEO).
BLASTEX will facilitate two-way knowledge transfer across the Atlantic, enabling the researcher to find a future tenure-track position while honing his leadership/fundraising skills in blast research and the design of experimental facilities.

Status

SIGNED

Call topic

HORIZON-MSCA-2023-PF-01-01

Update Date

22-11-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.1 Excellent Science
HORIZON.1.2 Marie Skłodowska-Curie Actions (MSCA)
HORIZON.1.2.0 Cross-cutting call topics
HORIZON-MSCA-2023-PF-01
HORIZON-MSCA-2023-PF-01-01 MSCA Postdoctoral Fellowships 2023