Summary
Harvesting infrared light, specifically wavelengths above 1000 nm, is of paramount importance for enhancing photovoltaic and photoelectric efficiencies, as well as for applications in imaging and communication. In recent years, significant strides have been made in the realm of infrared optoelectronics, leveraging colloidal quantum dots (0D materials) as a cost-effective alternative to conventional semiconductor technologies like InGaAs, InSb, HgCdTe, and others. Nevertheless, prevailing infrared technologies often rely on toxic compounds such as lead, cadmium, and mercury chalcogenide, giving rise to significant environmental concerns. Recently, heavy metal-free doped metal oxide nanocrystals (NCs), exemplified by Sn-doped In2O3 (ITO), have garnered recognition in the fields of nanoelectronics and energy storage owing to their alluring optical and electronic properties. The integration of plasmonic nanomaterials into semiconductor matrices holds great promise in diverse areas, including solar energy harvesting, photocatalysis, and photodetection. However, their application in the infrared spectrum alongside semiconductors remains relatively underexplored. To address this gap, we introduce the INFRALIGHT project, which introduces a pioneering approach: the establishment of a dedicated Schottky junction between semiconducting fluorographene and heavy metal-free doped metal oxide nanocrystals (e.g., Sn@In2O3) to efficiently capture infrared light. This junction will facilitate efficient charge transfer when exposed to infrared excitation. Our subsequent objective is to demonstrate a proof-of-concept photodetector device operating at a self-bias voltage (0 V). This device will exhibit an enhanced near-infrared (NIR) photoresponse achieved through the photoinduced extraction of plasmon hot electrons from IR hotspot plasmons. Within the framework of INFRALIGHT, we will delve into device development and investigate the interaction of IR plasmons with 2D semiconductors.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101152448 |
Start date: | 01-09-2024 |
End date: | 31-08-2026 |
Total budget - Public funding: | - 172 750,00 Euro |
Cordis data
Original description
Harvesting infrared light, specifically wavelengths above 1000 nm, is of paramount importance for enhancing photovoltaic and photoelectric efficiencies, as well as for applications in imaging and communication. In recent years, significant strides have been made in the realm of infrared optoelectronics, leveraging colloidal quantum dots (0D materials) as a cost-effective alternative to conventional semiconductor technologies like InGaAs, InSb, HgCdTe, and others. Nevertheless, prevailing infrared technologies often rely on toxic compounds such as lead, cadmium, and mercury chalcogenide, giving rise to significant environmental concerns. Recently, heavy metal-free doped metal oxide nanocrystals (NCs), exemplified by Sn-doped In2O3 (ITO), have garnered recognition in the fields of nanoelectronics and energy storage owing to their alluring optical and electronic properties. The integration of plasmonic nanomaterials into semiconductor matrices holds great promise in diverse areas, including solar energy harvesting, photocatalysis, and photodetection. However, their application in the infrared spectrum alongside semiconductors remains relatively underexplored. To address this gap, we introduce the INFRALIGHT project, which introduces a pioneering approach: the establishment of a dedicated Schottky junction between semiconducting fluorographene and heavy metal-free doped metal oxide nanocrystals (e.g., Sn@In2O3) to efficiently capture infrared light. This junction will facilitate efficient charge transfer when exposed to infrared excitation. Our subsequent objective is to demonstrate a proof-of-concept photodetector device operating at a self-bias voltage (0 V). This device will exhibit an enhanced near-infrared (NIR) photoresponse achieved through the photoinduced extraction of plasmon hot electrons from IR hotspot plasmons. Within the framework of INFRALIGHT, we will delve into device development and investigate the interaction of IR plasmons with 2D semiconductors.Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
25-11-2024
Images
No images available.
Geographical location(s)