MiRAGE | Enhanced mission autonomy through on-board Artificial Intelligence for next generation spacecraft

Summary
There are currently around 1,600 active satellites orbiting around the Earth, and more than 4,500 will be launched within 2026. None of them is designed to be autonomous. For a standard mission, this turns into a time span of several hours to detect system failures, to perform orbit and attitude correction, and to identify important mission events as monitoring of forest fires, flooding, or acquisition of important scientific data. In an era where Artificial Intelligence is making cars and other systems smarter and more autonomous, at AIKO Space we have seen a huge market opportunity in endowing spacecraft with AI-based capabilities. We are a team of experts in aerospace engineering and Artificial Intelligence, and we have developed MiRAGE, the first in-flight software on the market based on AI and designed to allow increased mission autonomy for micro (< 50kg) and conventional satellites. MiRAGE has proved that an important mission indicator as the “personnel to spacecraft ratio” can be decreased by the current average value of 2.5 to 0.1, thus providing a substantial value to customers as satellite manufacturers and satellite operators. The product development roadmap is now focused on validating the compatibility of MiRAGE with most micro and conventional satellites’ onboard computing architectures (Phase 1), which will also allow us to have a more thorough assessment of the actual market potential of our solution. The following step will be to proceed with system engineering and preparation to the in-orbit validation (Phase 2) together with large prospective customers, which will pave the way to the beginning of the commercialization phase in Q4 2020. We plan to install MiRAGE in more than 250 satellites by 2022, generating a turnover of more than 8 M€ after 3 years of commercialization, and targeting EBITDA levels in the range of 45%, in line with the standard in the sector.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/816442
Start date: 01-04-2018
End date: 30-09-2018
Total budget - Public funding: 71 429,00 Euro - 50 000,00 Euro
Cordis data

Original description

There are currently around 1,600 active satellites orbiting around the Earth, and more than 4,500 will be launched within 2026. None of them is designed to be autonomous. For a standard mission, this turns into a time span of several hours to detect system failures, to perform orbit and attitude correction, and to identify important mission events as monitoring of forest fires, flooding, or acquisition of important scientific data. In an era where Artificial Intelligence is making cars and other systems smarter and more autonomous, at AIKO Space we have seen a huge market opportunity in endowing spacecraft with AI-based capabilities. We are a team of experts in aerospace engineering and Artificial Intelligence, and we have developed MiRAGE, the first in-flight software on the market based on AI and designed to allow increased mission autonomy for micro (< 50kg) and conventional satellites. MiRAGE has proved that an important mission indicator as the “personnel to spacecraft ratio” can be decreased by the current average value of 2.5 to 0.1, thus providing a substantial value to customers as satellite manufacturers and satellite operators. The product development roadmap is now focused on validating the compatibility of MiRAGE with most micro and conventional satellites’ onboard computing architectures (Phase 1), which will also allow us to have a more thorough assessment of the actual market potential of our solution. The following step will be to proceed with system engineering and preparation to the in-orbit validation (Phase 2) together with large prospective customers, which will pave the way to the beginning of the commercialization phase in Q4 2020. We plan to install MiRAGE in more than 250 satellites by 2022, generating a turnover of more than 8 M€ after 3 years of commercialization, and targeting EBITDA levels in the range of 45%, in line with the standard in the sector.

Status

CLOSED

Call topic

EIC-SMEInst-2018-2020

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.0. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Cross-cutting calls
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-1
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.0. INDUSTRIAL LEADERSHIP - Innovation In SMEs - Cross-cutting calls
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-1
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.0. Cross-cutting call topics
H2020-EIC-SMEInst-2018-2020
H2020-SMEInst-2018-2020-1