Summary
Technology in photonic quantum information processing and quantum computing is advancing rapidly, requiring more efficient and precise control of the generation of quantum states of light. Over the past decade, semiconductor quantum dots (QDs) have emerged as near-perfect photon sources with unprecedented photon emission rates compared to other technologies. However, two key factors, photon indistinguishability and extraction efficiency, are critical for practical applications such as multiphoton interferometric experiments, quantum computing and boson sampling. Achieving both high photon indistinguishability and extraction efficiency from any quantum light source is challenging due to inherent trade-offs between precise control of photon properties and efficient collection, as well as technical and material limitations. Various photonic structures (such as cavities and metamaterials) have been used to improve the extraction efficiency of the emitters, but they often introduce complexities that adversely affect photon indistinguishability. Imperfections such as etched surfaces around QDs can lead to unwanted effects like an unstable charge environment due to exposed crystal bonds and surface interactions, ultimately degrading photon indistinguishability. To address these issues and improve performance, a promising alternative approach is to integrate quantum dots with Dirac photonic metamaterials. Within these metamaterials, topological states can emerge as protected edge states, which are known to be resilient to disorder and imperfections. Furthermore, Dirac photonic metamaterials lead to enhanced light-matter interactions, allowing a dramatic increase in spontaneous emission and the manipulation of chiral photon modes. The overall aim of this project is to combine quantum dots (InGaAs) with Dirac photonic metamaterials to achieve specific goals, including high photon indistinguishability, efficient photon extraction and tailored single-photon emission.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101152619 |
Start date: | 01-05-2024 |
End date: | 30-04-2026 |
Total budget - Public funding: | - 173 847,00 Euro |
Cordis data
Original description
Technology in photonic quantum information processing and quantum computing is advancing rapidly, requiring more efficient and precise control of the generation of quantum states of light. Over the past decade, semiconductor quantum dots (QDs) have emerged as near-perfect photon sources with unprecedented photon emission rates compared to other technologies. However, two key factors, photon indistinguishability and extraction efficiency, are critical for practical applications such as multiphoton interferometric experiments, quantum computing and boson sampling. Achieving both high photon indistinguishability and extraction efficiency from any quantum light source is challenging due to inherent trade-offs between precise control of photon properties and efficient collection, as well as technical and material limitations. Various photonic structures (such as cavities and metamaterials) have been used to improve the extraction efficiency of the emitters, but they often introduce complexities that adversely affect photon indistinguishability. Imperfections such as etched surfaces around QDs can lead to unwanted effects like an unstable charge environment due to exposed crystal bonds and surface interactions, ultimately degrading photon indistinguishability. To address these issues and improve performance, a promising alternative approach is to integrate quantum dots with Dirac photonic metamaterials. Within these metamaterials, topological states can emerge as protected edge states, which are known to be resilient to disorder and imperfections. Furthermore, Dirac photonic metamaterials lead to enhanced light-matter interactions, allowing a dramatic increase in spontaneous emission and the manipulation of chiral photon modes. The overall aim of this project is to combine quantum dots (InGaAs) with Dirac photonic metamaterials to achieve specific goals, including high photon indistinguishability, efficient photon extraction and tailored single-photon emission.Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
24-11-2024
Images
No images available.
Geographical location(s)