Summary
The synthesis of novel monomers that combine a bio-origin, scalability, low cost, and structural modularity merged with the synthesis of custom-degradable plastics is one of the major objectives in sustainable development. Realization of these goals can contribute to a circular rather than a linear economy. Within this context, the IMPULSE project aims to develop novel strategies for the catalytic synthesis of renewable polyethers featuring tunable properties using isopropenyl esters (iPEs) as biobased and inexpensive precursors. The key polymerization strategy that is used entails ring-opening polymerization (ROP) through proper activation of iPE-derived oxides using Host-developed catalysts with known potential. The epoxide monomers are obtained through enzymatic epoxidation to streamline the green efforts of this research program. The main strengths of IMPULSE are the versatility of the starting precursors, the possibility of modulating the polyether structures and their properties before or after their synthesis, and the potential for degradation of the polyethers through controlled depolymerization, thereby creating a circular atom approach by repurposing the degradation products. The creation of a wider range of commercially attractive polyether macromolecules can boost a transition to biobased analogues with a significantly expanded application potential, and an increased tunability of the mechanical, thermal and optical properties while enabling an improved carbon footprint.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101153094 |
Start date: | 01-06-2025 |
End date: | 31-05-2027 |
Total budget - Public funding: | - 165 312,00 Euro |
Cordis data
Original description
The synthesis of novel monomers that combine a bio-origin, scalability, low cost, and structural modularity merged with the synthesis of custom-degradable plastics is one of the major objectives in sustainable development. Realization of these goals can contribute to a circular rather than a linear economy. Within this context, the IMPULSE project aims to develop novel strategies for the catalytic synthesis of renewable polyethers featuring tunable properties using isopropenyl esters (iPEs) as biobased and inexpensive precursors. The key polymerization strategy that is used entails ring-opening polymerization (ROP) through proper activation of iPE-derived oxides using Host-developed catalysts with known potential. The epoxide monomers are obtained through enzymatic epoxidation to streamline the green efforts of this research program. The main strengths of IMPULSE are the versatility of the starting precursors, the possibility of modulating the polyether structures and their properties before or after their synthesis, and the potential for degradation of the polyethers through controlled depolymerization, thereby creating a circular atom approach by repurposing the degradation products. The creation of a wider range of commercially attractive polyether macromolecules can boost a transition to biobased analogues with a significantly expanded application potential, and an increased tunability of the mechanical, thermal and optical properties while enabling an improved carbon footprint.Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
24-11-2024
Images
No images available.
Geographical location(s)