Summary
Ecological research necessitates the production of spatial maps representing an array of critical variables such as biodiversity, climate, land cover, and soil carbon storage. While current machine learning methods, such as the well-known random forest (RF), have been effective in generating maps for these variables, they often overlook the intricate spatial patterns inherent in ecological processes. The PRISM project seeks to introduce a novel approach that addresses this limitation by integrating and validating spatial patterns within machine learning models. The project will draw upon insights from various fields, including geography, landscape ecology, statistics, and computer science. To ensure the widespread dissemination and accessibility of its findings, PRISM will adopt a comprehensive open science approach, including manuscript publications, the development of open-source software, and the sharing of repositories containing data and code, enabling others to reproduce and build upon the project's results. Through this project, an exchange of knowledge is anticipated between the researcher and the host institution, fostering a collaborative partnership. Under the supervisor's mentorship, the researcher will acquire essential skills in group organization, grant preparation, and research leadership. The researcher will enrich the host institution by creating innovative methods for spatial data analysis, implementing impactful teaching methodologies, and sharing the principles of open science. Ultimately, the PRISM project is poised to fuel the researcher's interdisciplinary growth, positioning him as a valuable asset in both academia and industry. The project's outcomes have the potential to improve how ecological research is conducted, leading to more accurate predictions and a deeper understanding of complex spatial patterns in ecological systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101147446 |
Start date: | 14-08-2024 |
End date: | 13-08-2026 |
Total budget - Public funding: | - 189 687,00 Euro |
Cordis data
Original description
Ecological research necessitates the production of spatial maps representing an array of critical variables such as biodiversity, climate, land cover, and soil carbon storage. While current machine learning methods, such as the well-known random forest (RF), have been effective in generating maps for these variables, they often overlook the intricate spatial patterns inherent in ecological processes. The PRISM project seeks to introduce a novel approach that addresses this limitation by integrating and validating spatial patterns within machine learning models. The project will draw upon insights from various fields, including geography, landscape ecology, statistics, and computer science. To ensure the widespread dissemination and accessibility of its findings, PRISM will adopt a comprehensive open science approach, including manuscript publications, the development of open-source software, and the sharing of repositories containing data and code, enabling others to reproduce and build upon the project's results. Through this project, an exchange of knowledge is anticipated between the researcher and the host institution, fostering a collaborative partnership. Under the supervisor's mentorship, the researcher will acquire essential skills in group organization, grant preparation, and research leadership. The researcher will enrich the host institution by creating innovative methods for spatial data analysis, implementing impactful teaching methodologies, and sharing the principles of open science. Ultimately, the PRISM project is poised to fuel the researcher's interdisciplinary growth, positioning him as a valuable asset in both academia and industry. The project's outcomes have the potential to improve how ecological research is conducted, leading to more accurate predictions and a deeper understanding of complex spatial patterns in ecological systems.Status
SIGNEDCall topic
HORIZON-MSCA-2023-PF-01-01Update Date
24-11-2024
Images
No images available.
Geographical location(s)